期刊文献+

挖掘关联规则的并行算法 被引量:4

Parallel Algorithm for Mining Association Rules
下载PDF
导出
摘要 从大型数据库中挖掘关联规则是数据挖掘中一个重要的课题 .从挖掘要求的时间和空间上看 ,传统的顺序算法已很难适应于现实中不断增大的数据库规模 .而研究和发展高性能、可扩展的并行算法对解决这一问题就显得十分必要 .本文介绍了挖掘关联规则一些主要的并行算法 ,并对它们进行了一定分析 ,指出了发展并行算法要考虑的一些问题 . Mining association rules from large databases is an important problem in data mining. It becomes nearly impossible to process large databases on a single sequential machine, for both time and space reasons. There is a need to develop parallel algorithm for this problem. In this paper, we discuss some existed parallel association rule mining algorithms(ARM) ,and then point out the challenges in this field.
出处 《小型微型计算机系统》 CSCD 北大核心 2002年第10期1231-1234,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金 ( 6 9985 0 0 4)资助
关键词 数据挖掘 关联规则 并行算法 数据库 data mining association rules parallel aglorithm
  • 相关文献

参考文献12

  • 1Agrawal,R. Srikant,R. Fast algorithms for mining association rules[C]. Proc. of the 20th Intl Conference on Very Large Databases, Santiago, Chile, Sept. 1994. 487~499. 被引量:1
  • 2Agrawal,R. and Shafer,J.C. Parallel mining of association rules[J]. In IEEE Transactions on Knowledge and Data Engineering, December 1996. 8(6):962~969. 被引量:1
  • 3Park,J S., Chen, M. and Yu.P S. An effective hash-based algorithm for mining association rules[C]. Proc. of the ACM SIGMOD Intl Conf. on Management of Data, San Jose, CA, 1995. 175~186. 被引量:1
  • 4Park,J.S., Chen,M.and P.S.Y :Efficient parallel data mining for association rules[C]. In ACM Intl. Conf.Information and Knowledge Management.November1995. 31~36 被引量:1
  • 5Brin,S.Motwani,R.Ullman,J.D and Tsur, S. Dynamic itemset counting and implication rules for market basket data[C].In ACM SIGMOD Conf. Management of Data ,May 1997. 255~264. 被引量:1
  • 6Cheng,D.W., Hu,K and Xia,S. Asynchronous parallel algorithm for mining association rules on a shared-memory multi-processors[C]. In 10th ACM Symp. Parallel Algorithm and Architectures, June 1998. 279~288. 被引量:1
  • 7Cheng,D., Han,J.,Ng,V.,Fu,A.and Fu,Y. A fast distributed algorithm for mining association rules[C]. In 4th Intl.Conf.Parallel and Distributed Info.Systems (PDIS-96), Miami Beach, Florida, December 1996. 31~43. 被引量:1
  • 8Zaki,M.J., Parthasarathy,S., Ogihara,M., and Li,W: New algorithms for fast discovery of association rules[C]. In 3rd Intl. Cnof.on Kowledge Discovery and Data Mining , August 1997.283~286. 被引量:1
  • 9Zaki,M. J., Parthasarathy,S., Ogihara,M., and Li,W: Parallel algorithms for fast discovery of association rules[J]. Data Mining and Knowledge Discovery: An International Journal, Dec 1997:1(4):343~373 被引量:1
  • 10Savasere,A., Omiecinski,E., and Navathe,S.: An efficient algorithm for mining association rules in large databas-es[C]. In 21st VLDB Conf, Z urich, Switzerland, September, 1995. 432~444 被引量:1

同被引文献25

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部