期刊文献+

Application of Optimized BP Neural Network in Addressing for Garbage Power Plant

Application of Optimized BP Neural Network in Addressing for Garbage Power Plant
下载PDF
导出
摘要 Neural network has the abilities of self-studying, self-adapting, fault tolerance and generalization. But there are some defaults in its basic algorithm, such as low convergence speed, local extremes, and uncertain number of implied layer and implied notes. This paper presents a solution for overcoming these shortages from two aspects. One is to adopt principle component analysis to select study samples and make some of them contain sample characteristics as many as possible, the other is to train the network using Levenberg-Marquardt backward propagation algorithm. This new method was proved to be valid and practicable in site selection of practical garbage power generation plants. Neural network has the abilities of self-studying, self-adapting, fault tolerance and generalization. But there are some defaults in its basic algorithm, such as low convergence speed, local extremes, and uncertain number of implied layer and implied notes. This paper presents a solution for overcoming these shortages from two aspects. One is to adopt principle component analysis to select study samples and make some of them contain sample characteristics as many as possible, the other is to train the network using Levenberg-Marquardt backward propagation algorithm. This new method was proved to be valid and practicable in site selection of practical garbage power generation plants.
出处 《Electricity》 2005年第A04期52-55,共4页 电气(英文版)
基金 This paper is about a project financed by the Research Fund for Doctoral Program of Higher Education (No. 20040079008).
关键词 garbage power plant LM algorithm neural network site selecdon principle component analysis garbage power plant LM algorithm neural network si
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部