摘要
分步Padé抛物方程(Split-Step PadéParabolic Equation,SSP-PE)是一种宽角近轴近似方法,可以精确计算传播角较大的电波传播.由于非均匀大气的折射效应的限制,SSP-PE难于利用傅里叶变换算法求解.因此,SSP-PE通常采用有限差分算法.但在计算雷达散射截面和城市小区短距电波传播的过程中,一般可以忽略大气的折射效应.不考虑大气折射,论文推导了SSP-PE的傅里叶变换解法.与有限差分算法相比,傅里叶变换解的计算效率更高.给出了理想导电边界条件下的数值算例,并比较了几何光学法和SSP-PE的计算结果,证明了傅里叶变换解的正确性.
As a wide angle paraxial approximation,split-step Padéparabolic equation(SSP-PE)gives exact solution to wave propagation involving large propagation angles.Considering non-uniform refractive index,it is difficult to solve SSP-PE using Fourier transform.In general,SSP-PE is computed using finite-difference method.However,it is rational to ignore atmospheric refraction for radar cross section(RCS)calculation and short-range propagation,and then the Fourier transform solution of SSP-PE can be derived,which is presented in the paper.The Fourier transform method is more efficient than finite-difference codes.Numerical result with perfect electric conductor boundary condition is provided and is compared with the geometric theory of diffraction.
出处
《电波科学学报》
EI
CSCD
北大核心
2014年第3期450-454,475,共6页
Chinese Journal of Radio Science
基金
国家自然科学基金项目(41376041
61172026)
教育部博士点基金项目(20130171110024)
广东省自然科学基金项目(S2013040013643)
关键词
分步Padé近似
抛物方程
傅里叶变换解
split-step Padé approximation
parabolic equation
the Fourier transform solution