期刊文献+

Skeleton-based canonical forms for non-rigid 3D shape retrieval 被引量:1

Skeleton-based canonical forms for non-rigid 3D shape retrieval
原文传递
导出
摘要 The retrieval of non-rigid 3D shapes is an important task. A common technique is to simplify this problem to a rigid shape retrieval task by producing a bending-invariant canonical form for each shape in the dataset to be searched. It is common for these techniques to attempt to "unbend" a shape by applying multidimensional scaling(MDS) to the distances between points on the mesh, but this leads to unwanted local shape distortions. We instead perform the unbending on the skeleton of the mesh, and use this to drive the deformation of the mesh itself. This leads to computational speed-up, and reduced distortion of local shape detail. We compare our method against other canonical forms: our experiments show that our method achieves state-of-the-art retrieval accuracy in a recent canonical forms benchmark, and only a small drop in retrieval accuracy over the state-of-the-art in a second recent benchmark, while being significantly faster. The retrieval of non-rigid 3D shapes is an important task. A common technique is to simplify this problem to a rigid shape retrieval task by producing a bending-invariant canonical form for each shape in the dataset to be searched. It is common for these techniques to attempt to 'unbend' a shape by applying multidimensional scaling(MDS) to the distances between points on the mesh, but this leads to unwanted local shape distortions. We instead perform the unbending on the skeleton of the mesh, and use this to drive the deformation of the mesh itself. This leads to computational speed-up, and reduced distortion of local shape detail. We compare our method against other canonical forms: our experiments show that our method achieves state-of-the-art retrieval accuracy in a recent canonical forms benchmark, and only a small drop in retrieval accuracy over the state-of-the-art in a second recent benchmark, while being significantly faster.
出处 《Computational Visual Media》 2016年第3期231-243,共13页 计算可视媒体(英文版)
基金 supported by EPSRC Research Grant No. EP/J02211X/1
关键词 CANONICAL forms shape RETRIEVAL SKELETONS pose INVARIANCE canonical forms shape retrieval skeletons pose invariance
  • 相关文献

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部