摘要
Understanding the responses of field crops such as soybean to climate warming is critical for economic development and adaptive management of food security. A field warming experiment was conducted using infrared heaters to investigate the responses of soybean phenology, photosynthetic characteristics, and yield to climate warming in the North China Plain. The results showed that 0.4 °C and 0.7 °C increases in soybean canopy air and soil temperature advanced anthesis stage by 3.8 days and shortened the length of entire growth stage by 4.5 days. Warming also decreased the leaf photosynthetic rate by 6.6% and 10.3% at the anthesis and seed filling stages, respectively, but increased the leaf vapor pressure deficit by 9.4%, 15.7%, and 14.1% at the anthesis, pod setting, and seed filling stages,respectively. However, leaf soluble sugar and starch were decreased by 25.6% and 20.5%,respectively, whereas stem soluble sugar was reduced by 12.2% at the anthesis stage under experimental warming. The transportation amount of leaf soluble sugar and contribution rate of transportation amount to seed weight were reduced by 58.2% and 7.7%, respectively,under warming. As a result, warming significantly decreased 100-seed weight and soybean yield by 20.8% and 45.0%, respectively. Our findings provide better mechanistic understanding of soybean yield response to climate warming and could be helpful for forecasting soybean yield under future climate warming conditions.
Understanding the responses of field crops such as soybean to climate warming is critical for economic development and adaptive management of food security. A field warming experiment was conducted using infrared heaters to investigate the responses of soybean phenology, photosynthetic characteristics, and yield to climate warming in the North China Plain. The results showed that 0.4 °C and 0.7 °C increases in soybean canopy air and soil temperature advanced anthesis stage by 3.8 days and shortened the length of entire growth stage by 4.5 days. Warming also decreased the leaf photosynthetic rate by 6.6%and 10.3%at the anthesis and seed filling stages, respectively, but increased the leaf vapor pressure deficit by 9.4%, 15.7%, and 14.1% at the anthesis, pod setting, and seed filling stages, respectively. However, leaf soluble sugar and starch were decreased by 25.6% and 20.5%, respectively, whereas stem soluble sugar was reduced by 12.2%at the anthesis stage under experimental warming. The transportation amount of leaf soluble sugar and contribution rate of transportation amount to seed weight were reduced by 58.2%and 7.7%, respectively, under warming. As a result, warming significantly decreased 100-seed weight and soybean yield by 20.8% and 45.0%, respectively. Our findings provide better mechanistic under-standing of soybean yield response to climate warming and could be helpful for forecasting soybean yield under future climate warming conditions.
基金
financially supported by Scientific Innovation Talent of Henan Province(114200510016)