New multi—soliton solutions and travelling wave solutions of the dispersive long—wave equations
被引量:9
同被引文献59
1 叶琳,于福江,吴玮.我国海啸灾害及预警现状与建议[J] .海洋预报,2005,22(z1):147-157. 被引量:31
2 ZHANG Jie-Fang HUANG Wen-Hua ZHENG Chun-Long.Exotic Localized Coherent Structures of New (2+1)-Dimensional Soliton Equation[J] .Communications in Theoretical Physics,2002(11):517-522. 被引量:8
3 温瑞智,任叶飞.我国地震海啸危险性分析方法研究[J] .世界地震工程,2007,23(1):6-11. 被引量:12
4 李志斌,张善卿.非线性波方程准确孤立波解的符号计算[J] .数学物理学报(A辑),1997,17(1):81-89. 被引量:114
5 方国洪 杨景飞 等.台湾海峡潮汐和潮流的一个数值模型[J].海洋学报,1985,7(1):12-19. 被引量:10
6 MASSEL S R, PELINOVSKY E N. Run up of dispersive and breaking waves on beaches [J]. Oceanologia, 2001, 43 (1): 61 -97. 被引量:1
7 EGOROV YU A. Evolution of long nonlinear gravity waves on shelves [J]. International Journal of Offshore and Polar Engineering, 1993, 3(1) : 1-6. 被引量:1
8 GRIMSHAW R. The solitary wave in water of variable depth [J]. Journal of Fluid Mechanics, 1970, 42:639-656. 被引量:1
9 KUNDU A J. Tsunami and Nonlinear Waves, Part I [M]. Springer Berlin Heidelberg, 2007. 被引量:1
10 MAITI S, SEN D. Computation of solitary waves during propagation and run-up on a slope [J]. Ocean Engineering, 1999, 26(11): 1063- 1083. 被引量:1
引证文献9
1 吴涛,陈贻汉,熊艳.形变映射法求非线性方程的行波解[J] .湖北大学学报(自然科学版),2005,27(2):104-108. 被引量:2
2 吴晓飞,朱加民.一维非线性传输线电位方程新解探索[J] .齐齐哈尔大学学报(自然科学版),2005,21(4):97-101. 被引量:2
3 姚远,蔡树群,王盛安.台湾海峡一次海啸的初步数值模拟[J] .热带海洋学报,2009,28(2):1-6. 被引量:4
4 徐昌智.非线性广义水波方程组的孤波解[J] .青岛大学学报(自然科学版),2003,16(2):14-18.
5 刘年福.非线性浅水波方程组的精确解[J] .贵州师范大学学报(自然科学版),2003,21(3):40-42. 被引量:1
6 徐昌智,郑春龙.Kdv-Burgers方程和Schrding-KdV耦合方程的显式行波解[J] .贵州师范大学学报(自然科学版),2003,21(3):43-47. 被引量:6
7 徐昌智,郑春龙.构造非线性波动方程孤波解的一种新方法[J] .浙江师范大学学报(自然科学版),2003,26(3):238-242.
8 徐昌智.非线性发展方程的新精确解[J] .内蒙古民族大学学报(自然科学版),2004,19(2):130-134.
9 何宝钢,张解放.形变映射方法和非线性WBK方程的研究[J] .商丘师范学院学报,2004,20(2):14-19.
二级引证文献15
1 左进明,周运明.一类组合KdV-Burgers方程的数值解法[J] .山东大学学报(理学版),2006,41(4):48-52. 被引量:1
2 刘利敏,张运章,王建宏.形变映射法求Hamilton方程的行波解[J] .云南民族大学学报(自然科学版),2007,16(1):9-12.
3 陈玲.对称正则长波方程的奇异孤立波解[J] .绵阳师范学院学报,2008,27(11):12-14. 被引量:1
4 钟太勇,贾卫红,余展翅.求非线性薛定谔方程的行波解的一种新途径[J] .郧阳师范高等专科学校学报,2010,30(3):7-9.
5 魏赟赟.带无界势的阻尼非线性Schrdinger方程的整体存在性[J] .四川师范大学学报(自然科学版),2010,33(4):450-454. 被引量:3
6 李灵晓,张金良.扩展的(G'/G)-展开法和gZK方程的精确解[J] .四川师范大学学报(自然科学版),2010,33(5):626-629. 被引量:7
7 冯庆江,崔娜,韩亮.用改进的试探函数法求解非线性发展方程[J] .山西师范大学学报(自然科学版),2011,25(4):14-18.
8 吴红英,燕宜佐,王彩红.组合KdV-Burgers方程的预校算法及其数值仿真[J] .怀化学院学报,2012,30(2):1-5.
9 任鲁川,洪明理.地震海啸危险性分析研究进展[J] .防灾科技学院学报,2012,14(2):9-14. 被引量:2
10 李大鸣,范玉,徐亚男,付庆军,李晓瑜.风暴潮三维数值计算模式的研究及在渤海湾的应用[J] .海洋科学,2012,36(7):7-13. 被引量:2
1 赵海琼,朱佐农.Multi-Soliton Solutions and Integrable Discretization for a Coupled Modified Volterra Lattice Equation[J] .Communications in Theoretical Physics,2012,58(8):244-250.
2 CHEN ChunLi~(1+) LI YiShen~2 ZHANG JinE~3 1 Department of Mathematics,Shanghai Jiaotong University,Shanghai 200240,China,2 Department of Mathematics,University of Science and Technology of China,Hefei 230026,China,3 SB and SEF,University of Hong Kong,Pokfulam Road,Hong Kong,China.The multi-soliton solutions of the CH-γ equation[J] .Science China Mathematics,2008,51(2):314-320. 被引量:3
3 Shou-fu Li (Institute for Computational and Applied Mathematics, Xiangtan University, Xiangtan 411105, China).ORDER PROPERTIES AND CONSTRUCTION OF SYMPLECTIC RUNGE-KUTTA METHODS[J] .Journal of Computational Mathematics,2000,18(6):645-656.
4 尤福财,张娇,郝宏海.Multi-Soliton Solutions of the Levi Equations[J] .Chinese Physics Letters,2009,26(9):1-4.
5 ZHANG Jie-Fang HUANG Wen-Hua.Multisoliton Solutions of the (2+1)-Dimensional KdV Equation[J] .Communications in Theoretical Physics,2001(11):523-524. 被引量:1
6 SCHWARZ Fritz.Solving Inhomogeneous Linear Partial Differential Equations[J] .Journal of Partial Differential Equations,2010,23(4):374-388. 被引量:1
7 毕光庆,毕越凯.abstract Operators and Higher-order Linear Partial Differential Equation[J] .Chinese Quarterly Journal of Mathematics,2011,26(4):511-515.
8 ZHANG,Jie-fang(张解放),LIU,Yu-lu(刘宇陆).LOCALIZED COHERENT STRUCTURES OF THE (2+1)-DIMENSIONAL HIGHER ORDER BROER-KAUP EQUATIONS[J] .Applied Mathematics and Mechanics(English Edition),2002,23(5):549-556.
9 Zhaqilao,LI Zhi-Bin.New Multi-soliton Solutions for the (2+1)-Dimensional Kadomtsev-Petviashvili Equation[J] .Communications in Theoretical Physics,2008,49(3):585-589.
10 ZHOU Guoquan School of Physics and Technology,Wuhan University,Wuhan 430072,Hubei,China.A Multi-Soliton Solution of the DNLS Equation Based on Pure Marchenko Formalism[J] .Wuhan University Journal of Natural Sciences,2010,15(1):36-42. 被引量:4
;