摘要
目前,基于膜/基系统在发生预滑动现象时的力学性能的有限元研究较少。基于ABAQUS有限元分析方法建立了二维半无限大平面应变有限元模型,探讨了薄膜/基体的弹性模量比、薄膜表面摩擦系数和薄膜厚度等参数对滑动接触临界条件下系统应力分布的影响规律,并结合最大Mises应力和膜/基屈服强度比对系统起始屈服失效位置进行了预测分析。结果表明:最大Mises应力值随摩擦系数的增大而增大,并使得最大Mises应力位置移向薄膜表面;软膜系统内部所受应力值相对较小,而硬膜系统内部所受应力值则相对较大且薄膜表面是最大Mises应力的主导位置,增加膜厚会减小界面和基体内部所受应力;表面摩擦系数较高时,膜/基界面和薄膜表面是系统起始屈服失效的主要位置;膜厚的增加导致了薄膜表面发生屈服失效的几率升高,且在硬膜系统中这种现象更为明显。
Based on ABAQUS finite element analysis method,a two-dimensional semi-infinite plane strain finite element model was established.The influence of the elastic modulus ratio of the coating/substrate,the friction coefficient and the coating thickness on the stress distribution of the system under critical conditions of sliding contact was discussed.The maximum Mises stress and the coating/substrate yield strength ratio were used to predict the initial yield failure position.Results showed that the maximum Mises stress increased with the increase of friction coefficient and caused the position of the maximum Mises stress to move toward the coating surface.The stress was relatively small in the soft-coating system,while relatively lager in the hard-coating system,and the coating surface was the dominant position of the maximum Mises stress.Increasing the coating thickness would reduce the stress on the interface and the interior of the substrate.When the friction coefficient was high,coating/substrate interface and coating surface were the main positions for the initial yield failure of the system.The increase of coating thickness led to the increased probability of yield failure on the coating surface,and this phenomenon was more obvious in the hard-coating system.
作者
张亚丽
王志强
曾泓凯
秦娜
ZHANG Ya-li;WANG Zhi-qiang;ZENG Hong-kai;QIN Na(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处
《材料保护》
CAS
CSCD
北大核心
2019年第6期27-34,共8页
Materials Protection
基金
国家重点研发计划项目(2016YFF0204305)
中央高校基本科研专项资金(2682016CX025)
中国博士后科学基金(2016M592691)资助
关键词
薄膜
滑动接触
临界条件
应力分布
屈服失效
有限元分析
coatings
sliding contact
critical condition
stress distribution
yield failure
finite element analysis