摘要
In this paper, we have studied electronic properties of a two-electron quantum dot using Tietz confining potential in the presence of an external magnetic field. In this regard, we have applied diagonalization procedure of Hamilonian matrix. We have calculated singlet-triplet ground state transitions as a function of the magnetic field. The obtained results show that the dot size of the Tietz potential has an important role in the ground state transition. The singlet-triplet transition of the ground state shifts towards lower magnetic field when the quantum size increases. Our results yield much less transitions than that of previous results [R.G. Nazmitdinov, N.S. Simonovic, and M.J. Rost, Phys.Rev. B 65(2002) 155307].
In this paper, we have studied electronic properties of a two-electron quantum dot using Tietz confining potential in the presence of an external magnetic field. In this regard, we have applied diagonalization procedure of Hamilonian matrix. We have calculated singlet-triplet ground state transitions as a function of the magnetic field. The obtained results show that the dot size of the Tietz potential has an important role in the ground state transition. The singlet-triplet transition of the ground state shifts towards lower magnetic field when the quantum size increases. Our results yield much less transitions than that of previous results [R.G. Nazmitdinov, N.S. Simonovic, and M.J. Rost, Phys.Rev. B 65(2002) 155307].