期刊文献+

基于网络Voronoi图的大规模多仓库物流配送路径优化 被引量:10

Large Scale Multi-depot Logistics Routing Optimization Based on Network Voronoi Diagram
原文传递
导出
摘要 由于存在多约束和多个优化目标,物流配送决策非常困难。本文针对城市多仓库物流配送问题,提出基于网络Voronoi图的空间启发式优化方法。从空间角度将多仓库物流配送优化分解为区域分割和路径优化两个空间子问题。基于网络Voronoi覆盖进行服务区域初始划分,顾及仓库容量差异,进行区域边界修正,并创建初始解。路径优化将局部搜索范围限定在网络K近邻内,只搜索最有可能的空间邻域,迭代改进解的质量。该算法最小化路径数量和路径长度。利用深圳市的大规模多仓库物流配送问题测试算法性能。试验结果表明:本文方法能够在15 min内求解6400个客户点的大规模物流配送问题,解的质量优于ArcGIS约10.8%,计算时间约为其21.2%。 Due to multi-constraints and multi-objectives,the optimization for large scale multi-depot logistics routing problem is very difficult.A spatial heuristics algorithm is proposed based on the network Voronoi diagram.From the spatial perspective,two involved spatial issues in the multi-depot logistics routing problem are service area partition and routing optimization.By using of depots' network Voronoi diagram,service area is coarsely partitioned and refined according to the goods storage in each depot.For the routing optimization,the local search space is limited within the spatial neighbors of customers.The proposed heuristics minimizes the used vehicles number and the total routes length.An experiment on several large scale logistics distribution instances in Shenzhen,China was implemented to validate the performance of the proposed heuristics algorithm.Results indicated that it provided high quality solution for large scale instances with 6400 customers in no more than 15 minutes.The proposed heuristics algorithm could be widely used in e-commerce,express delivery,public utility in city to promote logistics efficiency.
出处 《测绘学报》 EI CSCD 北大核心 2014年第10期1075-1082,1091,共9页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41401444 41231171 41371377) 深圳市战略性新兴产业发展专项资金(JCYJ20121019111128765) 深圳市基础研究计划(JCYJ20120817163755063) 测绘遥感信息工程国家重点实验室开放基金(13S02)
关键词 物流 启发式优化 网络Voronoi图 多仓库车辆路径问题 logistics heuristic network Voronoi diagram multi-depot vehicle routing problem
  • 相关文献

参考文献18

二级参考文献146

共引文献143

同被引文献95

引证文献10

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部