摘要
针对动态负载均衡算法在异构云环境中的任务迁移次数过多的问题,提出了一种最小化任务迁移次数的动态负载均衡(MMLB)算法。MMLB算法通过自适应阈值对虚拟机进行分组、任务选择算法最小化任务迁移的次数、任务调度算法优化任务分配实现了任务的再分配。将MMLB与WRR、HBBLB、LBF算法进行实验对比分析,MMLB算法在makespan、平均任务响应时间、负载不均衡度等评价指标上表现更优,并且有效降低了任务迁移的次数。实验结果验证了MMLB算法的可行性和有效性。
For the problem of excessive task migration times in the dynamic load balancing algorithm,this paper presented a dynamic load balancing( MMLB) algorithm to minimize task scheduling times. MMLB algorithm throughed the adaptive threshold to group the virtual machine,task selection algorithm to minimize migrated tasks' times,task scheduling algorithm to optimize the task allocation process to achieve the task of redistribution. The MMLB algorithm compared with WRR,HBBLB and LBF algorithm. MMLB algorithm's makespan,average task response time and degree of imbalance are better than other algorithm,even effectively reducing the number of tasks migration. The experimental results verify the feasibility and effectiveness of the MMLB algorithm.
作者
刘亚秋
孙新越
景维鹏
Liu Yaqiu;Sun Xinyue;Jing Weipeng(College of Information & Computer Engineering,Northeast Forestry University,Harbin 150040,China)
出处
《计算机应用研究》
CSCD
北大核心
2018年第12期3773-3776,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(31370565)
关键词
云计算
负载均衡
任务调度
任务迁移
虚拟机分组
cloud computing
load balance
task scheduling
task migration
virtual machine classification