期刊文献+

基于多方向韦伯梯度直方图的人脸识别 被引量:2

Face Recognition Based on Multi-Directional Weber Gradient Histograms
原文传递
导出
摘要 针对目前基于韦伯特征的人脸识别算法没有充分利用方向信息且提取信息不充分的问题,提出一种多方向韦伯梯度直方图的人脸识别方法。在原始差分激励的基础上增加邻域像素梯度,提取改进的差分激励和韦伯梯度特征;将改进的差分激励与韦伯方向进行量化并分块提取二维直方图,进而转化为一维直方图特征,将韦伯梯度分块后沿韦伯方向累积提取直方图特征;连接两个特征形成组合特征,并利用最近邻分类器分类。通过在不同人脸库的实验可看出,所提算法具有良好的识别效果,且对光照、表情和部分遮挡变化有较好的稳健性。 Aiming at the problems in the face recognition algorithm based on Weber features that the directional information is not made full use and the extracted information is also insufficient, we propose a novel face recognition method based on multi-directional Weber gradient histograms. On the basis of original differential excitation, the neighborhood pixel gradient is increased, and the improved differential excitation and Weber gradient features are extracted. The improved differential excitation and Weber direction are quantized, and the two- dimensional histograms are extracted in blocks, which are further converted into one-dimensional histogram features. The histogram features are extracted along the Weber direction. Two features are connected to form a compound feature and simultaneously the nearest neighbor classifier is used for classifying. The experiments on different face databases show that the proposed method has not only a good recognition effect, but also a relatively strong robustness to illumination, expression and partial occlusion.
作者 杨恢先 徐唱 曾金芳 陶霞 Yang Huixian;Xu Change;Zeng Jinfang;Tao Xia(School of Physics and Optoelectronics,Xiangtan University,Xiangtan,Hunan 411105,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第11期190-198,共9页 Laser & Optoelectronics Progress
基金 湖南省自然科学基金(2018JJ3486)
关键词 图像处理 人脸识别 韦伯特征 多方向韦伯梯度直方图 image processing face recognition Weber feature multi-directional Weber gradient histogram
  • 相关文献

参考文献7

二级参考文献82

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2宋枫溪,杨静宇,刘树海,张大鹏.基于多类最大散度差的人脸表示方法[J].自动化学报,2006,32(3):378-385. 被引量:17
  • 3邓洪波,金连文.一种基于局部Gabor滤波器组及PCA+LDA的人脸表情识别方法[J].中国图象图形学报,2007,12(2):322-329. 被引量:36
  • 4Guofeng Zou, Wang Kejun, Yuan Lei, et al.. New research advances in facial expression recognition [C]. the IEEE 25th Chinese Control and Decision Conference ( CCDC), Guiyang, 2013: 3403-3409. 被引量:1
  • 5H Abdi, L J Williams. Principal component analysis [J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459. 被引量:1
  • 6J B Tenenbaum, V De Silva, J C Langford. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319-2323. 被引量:1
  • 7M Belkin, P Niyogi. Laplaeian eigenmaps and spectral techniques for embedding and clustering [C]. NIPS, 2001, 14: 585-591. 被引量:1
  • 8X He, D Cai, S Yah, el al.. Neighborhood preserving embedding [C]. Tenth IEEE International Conference on Computer Vision, 2005, 2: 1208-1213. 被引量:1
  • 9X He, S Yan, Y Hu, et al.. Face recognition using laplacianfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3) : 328-340. 被引量:1
  • 10Y Chang, C Hu, M Turk. Manifold of facial expression [C]. AMFG, 2003: 28-35. 被引量:1

共引文献82

同被引文献16

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部