期刊文献+

基于Dice系数准则的前向预测贪婪回溯算法

Forward Prediction Greedy Backtracking Algorithm Based on Dice Coefficient Criteria
下载PDF
导出
摘要 为了提高贪婪回溯算法的重构质量,从改进支撑集原子选择方式的角度出发,提出一种前向预测贪婪回溯算法。采用Dice系数准则作为相关性度量准则,利用前向预测方法,自适应选择出每次迭代所引入的最佳原子数目,最终回溯剔除冗余原子,确定最优支撑集,完成信号重构。实验结果表明:该算法保留了贪婪回溯类算法运算速度快、鲁棒性好的优点,实现了支撑集原子的优化选择。算法在提高重构精度的同时,重构成功率也有所提高。 In order to improve the reconstruction quality of greedy backtracking algorithm, a forward predictive greedy backtracking algorithm is proposed based on improving the atomic selection mode of support set. Firstly, the Dice coefficient criterion is used to measure the correlation. Then, the forward prediction method is used to select the optimal atomic number introduced by each iteration. Finally, the redundant atoms are deduced to determine the optimal support set and complete the signal reconstruction. Experiments result show that the algorithm preserves the advantages of high efficiency of greedy backtracking algorithm, high robust, and realizes the optimal selection of support set atom. The algorithm can improve the reconstruction precision and success rate.
作者 于金冬 芮国胜 于志军 田文飚 梁佐堂 Yu Jindong;Rui Guosheng;Yu Zhijun;Tian Wenbiao;Liang Zuotang(Training Base,Navy Aeronautical University,Qingdao 266109,China;Shandong Provincial Key Laboratory of Information & Signal Processing,Navy Aeronautical University,Yantai 264001,China;Administrant Brigade of Postgraduate,Navy Aeronautical University,Yantai 264001,China)
出处 《兵工自动化》 2018年第11期54-59,71,共7页 Ordnance Industry Automation
基金 国家自然科学基金资助项目(41606117) 国家自然科学基金资助项目(41476089) 国家自然科学基金资助项目(61671016)
关键词 压缩感知 支撑集 前向预测 Dice系数 贪婪回溯 compressed sensing support set forward prediction Dice coefficient greedy backtracking
  • 相关文献

参考文献5

二级参考文献31

  • 1E Cands, J Romberg and T Tao, Robust uncertainty prin- ciples: Exact signal reconstruction from highly incomplete frequency information [ J ], IEEE Trans. IT,2006,52 ( 2 ) : 489 -509. 被引量:1
  • 2D.L. Donoho, Compressed sensing [ J ] , IEEE Trans. IT ,2006,52 (4) : 1289-1306. 被引量:1
  • 3J. Yin and T. Chen, direction-of-arrival estimation using a sparse representation of array covariance vectors [ J ], IEEE Trans. SP,2011,59(9) :4489-4493. 被引量:1
  • 4C. Qi, X. Wang, L. Wu, underwater acoustic channel esti- mation based on sparse recovery algorithms [ J ] , IET SP, 2011,5(8) :739-747. 被引量:1
  • 5S. Samadi, M. Cetin, M. A. Masnadi-Shirazi, sparse rep- resentation-based synthetic aperture radar imaging [ J ], IET radar sonar navig. ,2011,5 (2) :182-193. 被引量:1
  • 6X. Zhu and R. Bamler, tomographie SAR inversion by L1- norm regularization-the compressive sensing approach [J], IEEE Trans. GRS,2011,48(10) :3839-3846. 被引量:1
  • 7D. L. Donoho and X. Huo, uncertainty principle and ideal atomic decomposition [ J ], IEEE Trans. IF, 2001,47 (6) ,2845-2862. 被引量:1
  • 8S. Mallat and Z. Zhang. Match pursuits with time-frequen- cy dictionaries [J]. IEEE Trans. SP, 1993,41 (12) : 3397-3415. 被引量:1
  • 9A. GilbertI M. Strauss and J. Tropp. etc.. Algorithmiclinear dimension reduction in the ell-1 norm for sparse vectors[ J]. Submitted for publication,2006. 被引量:1
  • 10A. Gilbert, M. Strauss and J. Tropp etc.. One sketch for all: Fast algorithms for compressed sensing[ C ]. In proc. 39th ACM Symp. Theory of computing, San Diego, June, 2007. 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部