期刊文献+

Hopf cyclic cohomology and Hodge theory for proper actions on complex manifolds

Hopf cyclic cohomology and Hodge theory for proper actions on complex manifolds
原文传递
导出
摘要 We introduce two Hopf algebroids associated to a proper and holomorphic Lie group action on a complex manifold. We prove that the cyclic cohomology of each Hopf algebroid is equal to the Dolbeault cohomology of invariant differential forms. When the action is cocompact, we develop a generalized complex Hodge theory for the Dolbeault cohomology of invariant differential forms. We prove that every cyclic cohomology class of these two Hopf algebroids can be represented by a generalized harmonic form. This implies that the space of cyclic cohomology of each Hopf algebroid is finite dimensional. As an application of the techniques developed in this paper, we generalize the Serre duality and prove a Kodaira type vanishing theorem. We introduce two Hopf algebroids associated to a proper and holomorphic Lie group action on a complex manifold. We prove that the cyclic cohomology of each Hopf algebroid is equal to the Dolbeault cohomology of invariant differential forms. When the action is cocompact, we develop a generalized complex Hodge theory for the Dolbeault cohomology of invariant differential forms. We prove that every cyclic cohomology class of these two Hopf algebroids can be represented by a generalized harmonic form. This implies that the space of cyclic cohomology of each Hopf algebroid is finite dimensional. As an application of the techniques developed in this paper, we generalize the Serre duality and prove a Kodaira type vanishing theorem.
作者 Xin ZHANG
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第5期1189-1214,共26页 中国高等学校学术文摘·数学(英文)
关键词 Cyclic cohomology complex Hodge theory proper action vanishing theorem Cyclic cohomology complex Hodge theory proper action vanishing theorem
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部