摘要
A hybridization technique is applied to the weak Galerkin finite element method (WGFEM) for solving the linear elasticity problem in mixed form. An auxiliary function, the Lagrange multiplier defined on the boundary of elements, is introduced in this method. Consequently, the computational costs are much lower than the standard WGFEM. Optimal order error estimates are presented for the approximation scheme. Numerical results are provided to verify the theoretical results.
A hybridization technique is applied to the weak Galerkin finite element method (WGFEM) for solving the linear elasticity problem in mixed form. An auxiliary function, the Lagrange multiplier defined on the boundary of elements, is introduced in this method. Consequently, the computational costs are much lower than the standard WGFEM. Optimal order error estimates are presented for the approximation scheme. Numerical results are provided to verify the theoretical results.