摘要
在桥梁、桥架等振动条件下运行的交联聚乙烯(XLPE)电缆线路,击穿故障多发生在支架附近的XLPE绝缘上,这可能是由于振动导致的XLPE绝缘劣化进一步加剧所导致。而目前没有对XLPE电缆绝缘在热–振动条件下的老化失效机理和运行状态评价的研究。因此,在分析电缆线路运行特点及电缆故障的基础上,通过构建XLPE电缆的热–振动联合老化试验平台,在试验平台上对XLPE电缆施加负荷电流和机械振动,同步开展热–振动联合老化和单一热老化试验。通过对1 440 h老化时间下的XLPE电缆绝缘取样分析,获得热–振动联合老化、单一热老化及未老化电缆的XLPE绝缘材料的力学性能、介电性能及微观结构的差异性,以分析振动对XLPE绝缘性能及电缆运行特性的影响。试验结果表明:热–振动联合作用下XLPE材料的氧化速率和程度均大于单一热老化条件下的数值,机械振动加速了XLPE绝缘层的老化。该研究成果可为振动运行条件下XLPE电缆线路的运行状态评估提供技术支持,具有实际工程应用价值。
Breakdown faults of XLPE cable lines often occur on the insulation near the support when the cable lines are put in operation under vibration conditions such as bridges and bridges. The vibration may further deteriorate XLPE insulation. At present, there is no research on aging failure mechanism and operation state evaluation of XLPE cable insulation under thermal-vibration condition. Therefore, we constructed a thermal-vibration aging test platform for XLPE cables. Load current and mechanical vibration were applied to XLPE cables on the test platform. After 1 440 hours aging test, the XLPE insulation of thermal-vibration aging cable and single thermal aging cable was tested simultaneously. The mechanical properties, dielectric properties and microstructures of XLPE insulation materials for thermal-vibration combined aging, single thermal aging and non-aging cables were obtained. The results show that the oxidation rate of XLPE material under the thermal-vibration is higher than that under the single thermal aging condition. The aging degree of XLPE insulation layer is accelerated by mechanical vibration. The research results will provide a technical support for the operation state evaluation of XLPE cable lines under vibration operation conditions, and will have practical engineering application value.
作者
张振鹏
金建伟
刘骥
赵洪
蒙绍新
赵健康
ZHANG Zhenpeng;JIN Jianwei;LIU Ji;ZHAO Hong;MENG Shaoxin;ZHAO Jiankang(China Electric Power Research Institute,Wuhan 430074,China;State Key Laboratory of Power Grid Environmental Protection,Wuhan 430074,China;Harbin University of Science and Technology,Harbin 150080,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2018年第11期3707-3712,共6页
High Voltage Engineering
基金
哈尔滨理工大学工程电介质及其应用教育部重点实验室2016年开放课题(KF20151110)~~