期刊文献+

考虑内外均衡安全增益的可量化社区隐藏算法

QUANTIFIABLE COMMUNITY HIDING ALGORITHM CONSIDERING INTERNAL AND EXTERNAL EQUILIBRIUM SECURITY GAIN
下载PDF
导出
摘要 为提高社区检测算法应对特定社区隐藏因素的能力,提出一种考虑内外均衡安全增益的可量化社区隐藏算法。通过研究社区隐藏的内在机制,推动社区检测算法性能的提升^([1])。在给出社区网络模型的基础上,对社区隐藏的评价指标进行定义,实现了社区隐藏的量化分析;基于社区检测的安全性增益指标对社区隐藏过程中的节点添加和边缘的删除策略进行研究,基于这些操作实现对网络社区的更新;对社区检测隐藏算法的安全性进行了理论分析,为社区隐藏算法应用提供理论基础。通过在选取的4种社区网络实例中的仿真实验显示,该算法具有优异的社区隐藏性能和计算效率。 In order to improve the ability of community detection algorithm to deal with specific community hidden factors, this paper proposed a quantifiable community hiding algorithm considering internal and external equilibrium security gain. We tried to promote the performance of community detection algorithm by studying the inherent mechanism hidden in the community. On the basis of the model of community network, we defined the evaluation indicators hidden in the community and realized the quantitative analysis hidden in the community. The strategy of adding nodes and deleting edges in the process of community hiding was studied based on security gain index of community detection, and the network community was updated according to these operations. The security of community detection hiding algorithm was analyzed theoretically, which provided a theoretical basis for the application of community hiding algorithm. Simulation results in four selected community network instances show that the algorithm has excellent performance of community hiding and computational efficiency.
作者 赵霞 魏霖静 肖君 Zhao Xia;Wei Linjing;Xiao Jun(School of Information Science and Technology,Gansu Agricultural University,Lanzhou 730000,Gansu,China;Department of System Integration,Gansu Computing Center,Lanzhou 730000,Gansu,China)
出处 《计算机应用与软件》 北大核心 2018年第12期278-284,共7页 Computer Applications and Software
基金 甘肃省科技厅2018年自然科学基金项目(18JR3RA79)
关键词 内外均衡 安全增益 可量化 社区隐藏 Internal and external equilibrium Security gain Quantifiable Community hiding
  • 相关文献

参考文献5

二级参考文献126

  • 1Ostendorf M, Favre B, Grishman R, et al.. Speech segmentation and spoken document processing[J]. IEEE Signal Processing Magazine, 2008, 25(3): 59-69. 被引量:1
  • 2Bouamrane M M and Luz S. Meeting browsing state-of-the- art review[J]. Multimedia Systems, 2007, 12(4-5): 439-457. 被引量:1
  • 3Tur G, Stolcke A, Voss L, et al.. The CALO meeting assistant system[J]. IEEE Transactions on Audio, Speech and Language Processing, 2010, 18(6): 1601-1611. 被引量:1
  • 4Margarita K, Vassiliki M, and Constantine K. Speaker segmentation and clustering[J]. Signal Processing, 2008, 88(5) 1091-1124. 被引量:1
  • 5Xavier A and Jean-Francois B. Fast speaker diarization based on binary keys[C]. International Conference on Acoustics, Speech and Signal Processing, IEEE, Prague, 2011: 4428-4431. 被引量:1
  • 6Imseng D and Friedland G. Tuning-robust initialization methods for speaker diarization[J]. IEEE Transactions on Audio, Speech and Language Processing, 2010, 18(8): 2028-2037. 被引量:1
  • 7Valente F, Motlicek P, and Vijayasenan D. Variational Bayesian speaker diarization of meeting recordings[C]. International Conference on Acoustics, Speech and Signal Processing, IEEE, Dallas, 2010: 4954-4957. 被引量:1
  • 8Han K J, Kim S, and Narayanan S S. Robust speaker clustering strategies to data source variation for improved speaker diarization[C]. IEEE Automatic Speech Recognition and Understanding (ASRU) Workshop, Kyoto, 2007: 262-267. 被引量:1
  • 9Li Y X and He Q H. Detecting laughter in spontaneous speech by constructing laughter bouts[J]. International Journal of Speech Technology, 2011, 14(3): 211-225. 被引量:1
  • 10http://glaros.dtc.umn.edu/gkhome/views/metis. 被引量:1

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部