期刊文献+

PARASOL/POLDER3卫星数据的海洋上空云检测 被引量:7

Cloud detection over ocean from PARASOL/POLDER3 satellite data
原文传递
导出
摘要 在卫星海洋遥感中,云作为海气耦合系统最重要的调节器之一,其检测结果对海洋上空云微物理特性的反演精度有较大影响。因此,快速而准确识别海洋上空的云像元是卫星遥感数据处理过程中首要解决的关键问题。以PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar)卫星搭载的POLDER3载荷遥感数据为研究对象,提出一种改进的海洋上空云检测方法。首先剔除海洋耀光;接着利用有云与晴空区近红外反射率差异检验识别有云像元,并利用偏振反射率检验进一步识别低反射率的云像元;然后利用近红外与可见光反射率比值检验识别晴空像元;最后建立多角度云检测结果空间融合规则,重新标记有云、晴空和未定像元。以印度洋海区为例进行实验分析,将云检测结果与Buriez方法进行对比,发现检测精度基本相当,而有云像元的识别速度却平均提高约3倍。结果表明:该方法能有效的检测出海洋上空的云像元,满足业务化数据处理的高精度及时效性要求,为后续云微物理特性反演提供可靠的数据源。 Clouds are important regulators of the ocean-atmosphere coupling system in ocean satellite remote sensing. The results of cloud detection have a significant influence on the retrieval accuracy of cloud microphysical properties over the ocean. Therefore, achieving cloud detection over the ocean and determining methods to improve the processing speed of operational algorithm and the precision of cloud pixel recognition for polarized sensors are urgent concerns. This work proposes an Improved Cloud Detection (ICD) algorithm over the ocean according to operational cloud detection problems in satellite polarized sensor data. A series of continuous processes and tests is used to identify the clear-sky and pixel-by-pixel cloudy area using the data of Polarization and Directionality of Earth's Reflectances (POLDER3). Such data are loaded by Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a LiDAR (PARASOL) satellite. The pixels are divided into ocean and land parts. Then, the ocean glint pixels are eliminated via the glint angle computing formula and the empirical threshold (see MODIS 40 degrees). Thereafter, the cloudy pixels are identified using the characteristic difference of near-infrared reflectance between cloud and clearsky regions. Cloudy pixels with low reflectance are also further recognized using a polarized reflectance test according to the polarized sensitive characteristics of cloud particles. Next, the clear-sky pixels are identified by the reflectance ratio test between near-infrared and visible light. Finally, the spatial registration rule is created with multi-angle cloud detecting results, and all pixels are relabeled to cloudy, clear-sky, and undetermined pixels with this rule. The Indian Ocean is used as an example for experimental analysis. The results of improved cloud detection are compared with those of the Buriez method. The detection accuracy is very close to the Buriez algorithm but is more time-efficient. In the case of c
作者 陈震霆 孙晓兵 乔延利 CHEN Zhenting;SUN Xiaobing;QIAO Yanli(Key Laboratory of Optical Calibration and Characterization,Hefei Institutes of Physical Sciences,Chinese Academy of Sciences,Hefei 230031,China;University of Science and Technology of China,Hefei 230026,China)
出处 《遥感学报》 EI CSCD 北大核心 2018年第6期996-1004,共9页 NATIONAL REMOTE SENSING BULLETIN
基金 国家国防科工局高分专项(民用部分)卫星应用共性关键技术项目(编号:32-Y20A22-9001-15/17) 中国科学院重点资助项目(编号:KGFZD-125-13-006) 国家大科学工程航空遥感系统资助项目 中国资源卫星应用中心资助项目~~
关键词 云检测 POLDER3载荷 偏振反射率 多角度空间融合 近红外 cloud detection POLDER3 sensor polarized reflectance multidirectional spatial fusion near infrared
  • 相关文献

参考文献1

  • 1顾行发,程天海,李正强,乔延顺著..大气气溶胶偏振遥感[M].北京:高等教育出版社,2015:185.

同被引文献71

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部