期刊文献+

Determination of Arctic melt pond fraction and sea ice roughness from Unmanned Aerial Vehicle (UAV) imagery 被引量:1

Determination of Arctic melt pond fraction and sea ice roughness from Unmanned Aerial Vehicle(UAV) imagery
下载PDF
导出
摘要 Melt ponds on Arctic sea ice are of great significance in the study of the heat balance in the ocean mixed layer, mass and salt balances of Arctic sea ice, and other aspects of the earth-atmosphere system. During the 7th Chinese National Arctic Research Expedition, aerial photographs were taken from an Unmanned Aerial Vehicle over an ice floe in the Canada Basin. Using threshold discrimination and three-dimensional modeling, we estimated a melt pond fraction of 1.63% and a regionally averaged surface roughness of 0.12 for the study area. In view- of the particularly foggy environment of the Arctic, aerial images were defogged using an improved dark channel prior based image defog algorithm, especially adapted for the special conditions of sea ice images. An aerial photo mosaic was generated, melt ponds were identified from the mosaic image and melt pond fractions were calculated. Three-dimensional modeling techniques were used to generate a digital elevation model allowing relative elevation and roughness of the sea ice surface to be estimated. Analysis of the relationship between the distributions of melt ponds and sea ice surface roughness show-s that melt ponds are smaller on sea ice with higher surface roughness, while broader melt ponds usually occur in areas where sea ice surface roughness is lower. Melt ponds on Arctic sea ice are of great significance in the study of the heat balance in the ocean mixed layer, mass and salt balances of Arctic sea ice, and other aspects of the earth-atmosphere system. During the 7th Chinese National Arctic Research Expedition, aerial photographs were taken from an Unmanned Aerial Vehicle over an ice floe in the Canada Basin. Using threshold discrimination and three-dimensional modeling, we estimated a melt pond fraction of 1.63% and a regionally averaged surface roughness of 0.12 for the study area. In view- of the particularly foggy environment of the Arctic, aerial images were defogged using an improved dark channel prior based image defog algorithm, especially adapted for the special conditions of sea ice images. An aerial photo mosaic was generated, melt ponds were identified from the mosaic image and melt pond fractions were calculated. Three-dimensional modeling techniques were used to generate a digital elevation model allowing relative elevation and roughness of the sea ice surface to be estimated. Analysis of the relationship between the distributions of melt ponds and sea ice surface roughness show-s that melt ponds are smaller on sea ice with higher surface roughness, while broader melt ponds usually occur in areas where sea ice surface roughness is lower.
出处 《Advances in Polar Science》 2018年第3期181-189,共9页 极地科学进展(英文版)
基金 funded by the National Natural Science Foundation of China (Grant no.41276193) the Global Change Research Program of China (Grant no.2015CB953901) the National Key Research and Development Program of China (Grant no.2016YFC1402704)
关键词 ARCTIC UAV melt pond fraction defog algorithm sea ice surface roughness Arctic UAV melt pond fraction defog algorithm sea ice surface roughness
  • 相关文献

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部