期刊文献+

基于实测数据的空中目标分类识别算法 被引量:9

Aircraft Target Classification and Recognition Algorithm Based on Measured Data
下载PDF
导出
摘要 该文在分析由常规窄带雷达获得的直升机、螺旋桨和喷气式飞机实测回波数据特征的基础上,提出一种基于多特征联合的分类识别算法。通过对大量实测回波数据的特征分析,提取多普勒频移、幅度相对量、时域和频域波形熵、时频特征多个具有明显区分性的特征,将其输入支撑向量机(SVM)分类器实现3类空中目标的分类。在分类的基础上,基于回波数据的时频谱宽和对称性特征,提出一种奇数与偶数片桨叶直升机识别方法。最后实测数据的处理结果验证了所提空中目标分类识别方法的有效性。 After analyzing the features of three measured data from the low-resolution radar system, corresponding to the helicopter, the propeller, and the turbojet, an algorithm is proposed by using multiple features to classify and recognize the aircraft targets. First, multiple features are extracted, including Doppler frequency shift, relative magnitude, waveform entropy of time and frequency domain, and time-frequency domain features from the measured data. Then, these features are utilized for classification purpose by means of tile Support Vector Machine (SVM). Finally, owing to the symmetry and the width of time-frequency distributions of the returned signals between the helicopters with odd and even blades, a method is proposed to recognize of helicopter. The experimental results of measured data verify the effectivity of the proposed algorithms.
作者 李明 吴娇娇 左磊 宋万杰 刘慧敏 LI Ming ,WU Jiaojiao ,ZUO Lei,SONG Wanjie, LIU Huimin(National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China); (Collaborative Innovation Center of Radar at Xidian University, Xi'an 710071, China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第11期2606-2613,共8页 Journal of Electronics & Information Technology
基金 国防预研基金(61424010302162401002) 国家自然科学基金(61501342) 陕西省自然科学基金(2017JM6019)~~
关键词 目标分类 特征提取 时频分析 直升机识别 Target classification Feature extraction Time-frequency signatures Helicopter recognition
  • 相关文献

参考文献5

二级参考文献42

  • 1陈凤,刘宏伟,杜兰,保铮.基于特征谱散布特征的低分辨雷达目标分类方法[J].中国科学:信息科学,2010,40(4):624-636. 被引量:18
  • 2方勇昌,张汉华,陈曾平.基于图像奇异值描述的雷达目标识别方法[J].航空计测技术,2004,24(5):15-17. 被引量:1
  • 3辛玉林,许人灿.低分辨雷达目标识别方法研究[J].现代电子技术,2005,28(19):17-19. 被引量:9
  • 4Tait P.Introduction to Radar Target Recognition[M].UK:the Institution of Electrical Engineers,2005:8-10. 被引量:1
  • 5Du L,Liu H,and Wang P.Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size[J].IEEE Transactions on Signal Processing,2012,60(7):3546-3559. 被引量:1
  • 6Toumi A,Khenchaf A,and Hoeltzener B.A retrieval system from inverse synthetic aperture radar images:application to radar target recognition[J].Information Sciences,2012,196(1):73-96. 被引量:1
  • 7Yuan Bin,Chen Zeng-ping,and Xu Shi-you.Micro-doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(2):1285-1298. 被引量:1
  • 8Chamberlain,N E,Walton,E K,and Garber F D.Radar target identification of aircraft using polarization-diverse features[J].IEEE Transactions on Aerospace and Electronic Systems,1991,27(1):58-67. 被引量:1
  • 9Du L,Wang B,Li Y,et al.Robust classification scheme for airplane targets with low resolution radar based on EMD-CLEAN feature extraction method[J].IEEE Sensors Journal,2013,13(12):4648-4662. 被引量:1
  • 10Bell M R and Grubbs R A.JEM modeling and measurement for radar target identification[J].IEEE Transactions on Aerospace and Electronic Systems,1993,29(1):73-87. 被引量:1

共引文献43

同被引文献88

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部