摘要
In our present work, a novel controlled radical polymerization system is developed based on xanthene-9-thione (XT). It was found that the radical polymerization of styrene (St) became controlled in the presence of a small amount of XT. At the early stage of the polymerization, the polymerization rate was relatively low and the as-formed polystyrene (PS) had low number-average molecular weight (Mn) and narrow polydispersity (D). After XT was consumed, the polymerization rate increased dramatically and the Mn of PS increased gradually with polymerization proceeding. When the polymerization of St was carried out with a proper molar ratio of initiator to XT and at an appropriate temperature, shortened slow polymerization stage and good control over Mn could be achieved. To further improve the regulating ability of XT, a series of substituent groups (-CF3, --CH(CH3)2, --N(CH3)2) were introduced onto the xanthene ring of XT, and the effects of these derivatives on the polymerization of St were investigated in detail. UV-Vis spectroscopy was carried out to monitor the concentration of XT during the polymerization and the chemical structure of the as-formed PS was fully characterized by IH- NMR and ESI-MS analysis. A possible mechanism involving the formation and evolution of the cross-termination products was proposed to interpret the observed polymerization behavior.
In our present work, a novel controlled radical polymerization system is developed based on xanthene-9-thione (XT). It was found that the radical polymerization of styrene (St) became controlled in the presence of a small amount of XT. At the early stage of the polymerization, the polymerization rate was relatively low and the as-formed polystyrene (PS) had low number-average molecular weight (Mn) and narrow polydispersity (D). After XT was consumed, the polymerization rate increased dramatically and the Mn of PS increased gradually with polymerization proceeding. When the polymerization of St was carried out with a proper molar ratio of initiator to XT and at an appropriate temperature, shortened slow polymerization stage and good control over Mn could be achieved. To further improve the regulating ability of XT, a series of substituent groups (-CF3, --CH(CH3)2, --N(CH3)2) were introduced onto the xanthene ring of XT, and the effects of these derivatives on the polymerization of St were investigated in detail. UV-Vis spectroscopy was carried out to monitor the concentration of XT during the polymerization and the chemical structure of the as-formed PS was fully characterized by IH- NMR and ESI-MS analysis. A possible mechanism involving the formation and evolution of the cross-termination products was proposed to interpret the observed polymerization behavior.
基金
financially supported by the National Natural Science Foundation of China (Nos. 21404004 and 21474006)
the Innovation and Promotion Project of Beijing University of Chemical Technology