期刊文献+

The rapid uncertainty prediction of the ocean-acoustic coupled model 被引量:2

The rapid uncertainty prediction of the ocean-acoustic coupled model
原文传递
导出
摘要 Focusing on the rapid prediction of acoustic field uncertainty in environment with temporal and spatial sound speed perturbation, evolvement of sound speed structure over time is predicted based on the ocean-acoustic coupled model to obtain the uncertainty distribution of the vertical structure of sound speed. Further, a method combining the arbitrary polynomial chaos expansion with the empirical orthogonal function is proposed to reduce the dimensionality of uncertain parameters and to obtain the uncertainty distribution of the acoustic field. Simulations have shown that the computational complexity can be reduced by 2 orders of magnitude compared to the conventional polynomial chaos expansion while ensures the same precision.Moreover, the computational complexity is not influenced by the complexity of the sound speed profile. The acoustic field and uncertainty predicted in uncertain environment by proposed method also have been tested with the experimental data. Focusing on the rapid prediction of acoustic field uncertainty in environment with temporal and spatial sound speed perturbation, evolvement of sound speed structure over time is predicted based on the ocean-acoustic coupled model to obtain the uncertainty distribution of the vertical structure of sound speed. Further, a method combining the arbitrary polynomial chaos expansion with the empirical orthogonal function is proposed to reduce the dimensionality of uncertain parameters and to obtain the uncertainty distribution of the acoustic field. Simulations have shown that the computational complexity can be reduced by 2 orders of magnitude compared to the conventional polynomial chaos expansion while ensures the same precision.Moreover, the computational complexity is not influenced by the complexity of the sound speed profile. The acoustic field and uncertainty predicted in uncertain environment by proposed method also have been tested with the experimental data.
出处 《Chinese Journal of Acoustics》 CSCD 2018年第4期435-447,共13页 声学学报(英文版)
基金 supported by the National 530 Special 2015 First Batch of Research and Service Support Projects the National Defense Scientific and Technological Innovation Special Zone Project(17-H863-05-ZT-001-024-01)
  • 相关文献

同被引文献33

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部