期刊文献+

良结构下推系统的可覆盖性问题的下界

Lower Bound for Coverability Problem of Well-Structured Pushdown Systems
下载PDF
导出
摘要 良结构下推系统是下推系统和良结构迁移系统的结合,该系统允许状态和栈字符是向量的形式,因而它们是无限的.状态迁移的同时允许栈进行入栈出栈的操作.它"非常接近不可判定的边缘".利用重置0操作,提出了一种模型可覆盖性问题复杂度下界的一般性证明方法,并且证明了状态是三维向量的子集和一般性的良结构下推系统的可覆盖性问题分别是Tower难和Hyper-Ackermann难的. Well-Structured pushdown systems (WSPDSs) combine pushdown systems and well-structured transition systems to allow locations and stack alphabets to be vectors, and thus they are unbounded. States change with the push and pop operations on the stack. The model has been said to be "very close to the border of undecidability". This paper proposes a general framework to get the lower bounds for coverability complexity of a model by adopting the reset-zero method. The paper proves that the complexity is Tower-hard when a WSPDS is restricted with three dimensional state vectors, and H^er-Ackermann hard for the ~eneral WSPDSs.
作者 李春淼 蔡小娟 李国强 LI Chun-Miao;CAI Xiao-Juan;LI Guo-Qiang(School of Software,Shanghai Jiaotong University,Shanghai 200240,China)
出处 《软件学报》 EI CSCD 北大核心 2018年第10期3009-3020,共12页 Journal of Software
基金 国家自然科学基金(61472238 61672340 61872232)~~
关键词 良结构下推系统 可覆盖性 下界 重置0 Hyper-Ackermann难 well-structured pushdown system coverability lower bound reset-zero Hyper-Ackermann hard
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部