期刊文献+

Effects of different aging treatments on microstructures and mechanical properties of Al-Cu-Li alloy joints welded by electron beam welding 被引量:4

Effects of different aging treatments on microstructures and mechanical properties of Al-Cu-Li alloy joints welded by electron beam welding
原文传递
导出
摘要 Post-weld single aging treatment(solution treatment at 510 ℃ for 1 h, water quenching,and aging at 155 ℃ for 16 h) and post-weld double aging treatment(solution treatment at 510 ℃ for 1 h, water quenching, aging at 155 ℃ for 16 h, and aging at 130 ℃ for 12 h) are carried out on Al-Cu-Li alloy joints by electron beam welding(EBW) respectively. The effects of aging treatments on microstructures and mechanical properties of welded joints are investigated. Results show that the mechanical properties of welded joints are obviously improved after both aging treatments. The strength coefficient of joints is increased from 0.64 in an as-welded condition(AW) to 0.90 after post-weld double aging treatment. Microstructure analysis shows that the precipitates of the fusion zone within grains and grain boundaries are less in the AW condition. After post-weld heat treatment(PWHT), a lot of fine needle-like phases T_1(Al_2 Cu Li) precipitate in grain boundaries of the fusion zone, and more horseshoe-shaped β' (Al_3 Zr) particles precipitate within grains. In addition,grains of the fusion zone are refined after post-weld double aging treatment, which leads to an effect of grain refinement strengthening. Consequently, the mechanical properties of welded joints are greatly improved. Post-weld single aging treatment(solution treatment at 510 ℃ for 1 h, water quenching,and aging at 155 ℃ for 16 h) and post-weld double aging treatment(solution treatment at 510 ℃ for 1 h, water quenching, aging at 155 ℃ for 16 h, and aging at 130 ℃ for 12 h) are carried out on Al-Cu-Li alloy joints by electron beam welding(EBW) respectively. The effects of aging treatments on microstructures and mechanical properties of welded joints are investigated. Results show that the mechanical properties of welded joints are obviously improved after both aging treatments. The strength coefficient of joints is increased from 0.64 in an as-welded condition(AW) to 0.90 after post-weld double aging treatment. Microstructure analysis shows that the precipitates of the fusion zone within grains and grain boundaries are less in the AW condition. After post-weld heat treatment(PWHT), a lot of fine needle-like phases T_1(Al_2 Cu Li) precipitate in grain boundaries of the fusion zone, and more horseshoe-shaped β' (Al_3 Zr) particles precipitate within grains. In addition,grains of the fusion zone are refined after post-weld double aging treatment, which leads to an effect of grain refinement strengthening. Consequently, the mechanical properties of welded joints are greatly improved.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第2期363-369,共7页 中国航空学报(英文版)
基金 project was supported by the Aeronautical Science Foundation of China (No. 2015ZE52048) A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
关键词 Al-Li alloy Electron beam welding Mechanical properties MICROSTRUCTURE Post-weld heat treatment Al-Li alloy Electron beam welding Mechanical properties Microstructure Post-weld heat treatment
  • 相关文献

同被引文献22

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部