摘要
Fluorescence lifetime and anisotropy has become a prevalent tool to detect the structure change and motility property of proteins. YgaP is the only membrane-integrated rhodanese in E. coli. The sulfur transfer process has been characterized by various studies. However, the mechanism of the outward transportation of SCN-remains unclear. In this work, we examined the fluorescence lifetime and anisotropy of site-specific incorporated unnatural amino acid 7-HC to study the conformational change of YgaP upon SCN-binding. We also compared the fluorescence changes between detergent-wrapped environment in DPC and intact native membrane environment in SMA. Our results suggested the presence of at least two different conformations in YgaP protein. Both the residues in the middle of TMH2 and the residues near extracellular side play important roles in the binding and/or output of SCN-. SMA is a good material to reflect the in situ conformation changes of protein than micelles.
Fluorescence lifetime and anisotropy has become a prevalent tool to detect the structure change and motility property of proteins. YgaP is the only membrane-integrated rhodanese in E. coli. The sulfur transfer process has been characterized by various studies. However, the mechanism of the outward transportation of SCN^- remains unclear. In this work, we examined the fluorescence lifetime and anisotropy of site-specific incorporated unnatural amino acid 7-HC to study the conformational change of YgaP upon SCN^- binding. We also compared the fluorescence changes between detergent-wrapped environment in DPC and intact native membrane environment in SMA. Our results suggested the presence of at least two different conformations in YgaP protein. Both the residues in the middle of TMH2 and the residues near extracellular side play important roles in the binding and/or output of SCN^-. SMA is a good material to reflect the in situ conformation changes of protein than micelles.
基金
supported by the National Key R&D Program of China (Nos. 2016YFA0400900, 2017YFA0505300)
the Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201564)