期刊文献+

一类忆阻递归神经网络的全局指数稳定性 被引量:1

Global exponential stability of a class of memristor-based recurrent neural networks
下载PDF
导出
摘要 研究一类忆阻递归神经网络(MRNNs)平衡点的全局指数稳定性。MRNNs激励函数是Lipschitz连续的,利用线性矩阵不等式和Lyapunov泛函理论,证明MRNNs平衡点是全局指数稳定的,并且在未引入其他参数的情况下,得到MRNNs平衡点全局指数稳定的充分条件,为电路的设计与实现提供了保障。数值实例验证了结果的有效性。 The global exponential stability of the equilibrium point of a class of memristor-based neural network (MRNNs) is studied. The activation function of the MRNNs is Lipschitz continuous, by using linear matrix inequality and Lyapunov functional theory, it is proved that the equilibrium of MRNNs is globally exponentially stable. Sufficient conditions are obtained for global exponential stability of the equilibrium point of MRNNs without other parameters, so as to provide a guarantee for designing and realization of the circuit. Numerical examples are illustrated to verify the effectiveness of the proposed results.
作者 刘凤秋 邱敏 LIU Fengqiu;QIU Min(School of Science,Harbin University of Science and Technology,Harbin 150080,China)
出处 《黑龙江大学自然科学学报》 CAS 2018年第4期407-412,共6页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11201100) 黑龙江省自然科学基金资助项目(A201213)
关键词 忆阻递归神经网络 全局指数稳定性 线性矩阵不等式 LYAPUNOV泛函 memristor-based recurrent neural network global exponential stability linear matrix inequality Lyapunov functional
  • 相关文献

参考文献2

二级参考文献18

  • 1Chua L O.Memristor--The Missing Circuit Element[J].IEEE Transactions on Circuit Theory,1971,18(5):507-519. 被引量:1
  • 2Strukov D B,Snider G S,Stewart D R,et al.The Missing Memristor Found[J].Nature,2008,453(7191):80-83. 被引量:1
  • 3Williams R.How We Found the Missing Memristor[J].Spectrum of IEEE,2008,45(12):28-35. 被引量:1
  • 4Liu Qingshan,Wang Jun.A One-layer Recurrent Neural Netw ork with A Discontinuous Hard-limiting Activation Function for Quadratic Programming[J].IEEE Transactions on Neural Netw orks,2008,19(4):558-570. 被引量:1
  • 5Wen Shiping,Bao Gang,Zeng Zhigang,et al.Global Exponential Synchronization of Memristor-based Recurrent Neural Networks with Time-varying Delays[J].Neural Networks,2013,48(12):195-203. 被引量:1
  • 6Wu Ailong,Zeng Zhigang.Exponential Passivity of Memristive Neural Netw orks with Time Delays[J].Neural Netw orks,2014,49(1):11-18. 被引量:1
  • 7Chen Jiejie,Zeng Zhigang.On the Periodic Dynamics of Memristor-based Neural Netw orks with Time-varying Delays[J].Information Sciences,2014,279(9):358-373. 被引量:1
  • 8Guo Zhenyuan,Wang Jun,Yan Zheng.Global Exponential Dissipativity and Stabilization of Memristorbased Recurrent Neural Netw orks with Time-varying Delays[J].Neural Netw orks,2013,48(12):158-172. 被引量:1
  • 9Hu Jin,Wang Jun.Global Uniform Asymptotic Stability of Memristor-based Recurrent Neural Netw orks with Time Delays[C]//Proceedings of IEEE International Joint Conference on Neural Netw orks.Washington D.C.,USA:IEEE Press,2010:1-8. 被引量:1
  • 10Wen Shiping,Zeng Zhigang,Huang Tingwen.Exponential Stability Analysis of Memristor-based Recurrent Neural Networks with Time-varying Delays[J].Neurocomputing,2012,97(11):233-240. 被引量:1

共引文献15

同被引文献12

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部