摘要
Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we reported a novel well-designed hierarchically porous nitrogen-doped carbon (HPNC) via acombination of salt template (ZnC12) and hard template (SiO2) as sulfur host for lithium-sulfur batter-ies. The low-melting ZnC12 is boiled off and leaves behind micropores and small size mesopores duringpyrolysis process, while the silica spheres are removed by acid leaching to generate interconnected 3Dnetwork of macropores. The HPNC-S electrode exhibits an initial specific capacity of 1355 mAh g^-l at 0.IC (IC= 1675 mAh g^-1 ), a high-rate capability of 623 mAh g-l at 2 C, and a small decay of 0.13% per cycleover 300 cycles at 0.2 C. This excellent rate capability and remarkable long-term cyclability of the HPNC-Selectrode are attributed to its hierarchical porous structures for confining the soluble lithium polysulfideas well as the nitrogen doping for high absorbability of lithium polysulfide.
Porous nitrogen-doped carbon is an especially promising material energy storage due to its excellentconductivity, stable physicochemical properties, easy processability, controllable porosity and low price.Herein, we reported a novel well-designed hierarchically porous nitrogen-doped carbon (HPNC) via acombination of salt template (ZnC12) and hard template (SiO2) as sulfur host for lithium-sulfur batter-ies. The low-melting ZnC12 is boiled off and leaves behind micropores and small size mesopores duringpyrolysis process, while the silica spheres are removed by acid leaching to generate interconnected 3Dnetwork of macropores. The HPNC-S electrode exhibits an initial specific capacity of 1355 mAh g^-l at 0.IC (IC= 1675 mAh g^-1 ), a high-rate capability of 623 mAh g-l at 2 C, and a small decay of 0.13% per cycleover 300 cycles at 0.2 C. This excellent rate capability and remarkable long-term cyclability of the HPNC-Selectrode are attributed to its hierarchical porous structures for confining the soluble lithium polysulfideas well as the nitrogen doping for high absorbability of lithium polysulfide.
基金
financially supported by the National Key Research and Development Program of China (2016YFB0101202)
the NSFC of China (Grants 91534205,21436003 and 21576031)
Graduate Research and Innovation Foundation of Chongqing China (Grant No.CYB17021)