期刊文献+

Water induced phase segregation in hydrocarbon proton exchange membranes 被引量:2

Water induced phase segregation in hydrocarbon proton exchange membranes
下载PDF
导出
摘要 Proton exchange membranes (PEMs) are a key material for proton exchange membrane fuel cells (PEM-FCs), Non-fluorinated hydrocarbon PEMs are low-cost alternatives to Nation, but limited by the low pro-ton conductivity, because of the weak phase segregation structure and narrow ion-transport channels.Various efforts have been taken to improve the performance of hydrocarbon PEMs, but mostly with com-plex methodologies. Here we demonstrate a simple, yet very efficient method to create phase segrega-tion structure inside a typical hydrocarbon PEM, sulfonated poly(ether ether ketone) (SPEEK). By sim-ply adding appropriate amounts of water into the DMF solvent, the resulting SPEEK membrane exhibitswidened ion-transport channels, with the phase size of 2.7 nm, as indicated by both molecular dynamic(MD) simulations and transmission electron microscope (TEM) observations, and the proton conductivityis thus improved by 200%. These findings not only further our fundamental understanding of hydrocarbonPEMs, but are also valuable to the development of low-cost and practical fuel cell technologies. Proton exchange membranes (PEMs) are a key material for proton exchange membrane fuel cells (PEM-FCs), Non-fluorinated hydrocarbon PEMs are low-cost alternatives to Nation, but limited by the low pro-ton conductivity, because of the weak phase segregation structure and narrow ion-transport channels.Various efforts have been taken to improve the performance of hydrocarbon PEMs, but mostly with com-plex methodologies. Here we demonstrate a simple, yet very efficient method to create phase segrega-tion structure inside a typical hydrocarbon PEM, sulfonated poly(ether ether ketone) (SPEEK). By sim-ply adding appropriate amounts of water into the DMF solvent, the resulting SPEEK membrane exhibitswidened ion-transport channels, with the phase size of 2.7 nm, as indicated by both molecular dynamic(MD) simulations and transmission electron microscope (TEM) observations, and the proton conductivityis thus improved by 200%. These findings not only further our fundamental understanding of hydrocarbonPEMs, but are also valuable to the development of low-cost and practical fuel cell technologies.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1517-1520,共4页 能源化学(英文版)
基金 financially supported by the National Key Research and Development Program of China (2016YFB0101203) the National Natural Science Foundation of China (91545205,21633008)
关键词 Proton exchange membrane Phase segregation Proton conductivity Molecular dynamics simulation Sulfonated poly(ether ether ketonel Proton exchange membrane Phase segregation Proton conductivity Molecular dynamics simulation Sulfonated poly(ether ether ketonel
  • 相关文献

同被引文献2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部