摘要
Proton exchange membranes (PEMs) are a key material for proton exchange membrane fuel cells (PEM-FCs), Non-fluorinated hydrocarbon PEMs are low-cost alternatives to Nation, but limited by the low pro-ton conductivity, because of the weak phase segregation structure and narrow ion-transport channels.Various efforts have been taken to improve the performance of hydrocarbon PEMs, but mostly with com-plex methodologies. Here we demonstrate a simple, yet very efficient method to create phase segrega-tion structure inside a typical hydrocarbon PEM, sulfonated poly(ether ether ketone) (SPEEK). By sim-ply adding appropriate amounts of water into the DMF solvent, the resulting SPEEK membrane exhibitswidened ion-transport channels, with the phase size of 2.7 nm, as indicated by both molecular dynamic(MD) simulations and transmission electron microscope (TEM) observations, and the proton conductivityis thus improved by 200%. These findings not only further our fundamental understanding of hydrocarbonPEMs, but are also valuable to the development of low-cost and practical fuel cell technologies.
Proton exchange membranes (PEMs) are a key material for proton exchange membrane fuel cells (PEM-FCs), Non-fluorinated hydrocarbon PEMs are low-cost alternatives to Nation, but limited by the low pro-ton conductivity, because of the weak phase segregation structure and narrow ion-transport channels.Various efforts have been taken to improve the performance of hydrocarbon PEMs, but mostly with com-plex methodologies. Here we demonstrate a simple, yet very efficient method to create phase segrega-tion structure inside a typical hydrocarbon PEM, sulfonated poly(ether ether ketone) (SPEEK). By sim-ply adding appropriate amounts of water into the DMF solvent, the resulting SPEEK membrane exhibitswidened ion-transport channels, with the phase size of 2.7 nm, as indicated by both molecular dynamic(MD) simulations and transmission electron microscope (TEM) observations, and the proton conductivityis thus improved by 200%. These findings not only further our fundamental understanding of hydrocarbonPEMs, but are also valuable to the development of low-cost and practical fuel cell technologies.
基金
financially supported by the National Key Research and Development Program of China (2016YFB0101203)
the National Natural Science Foundation of China (91545205,21633008)