期刊文献+

基于先验信息的人体肺癌电阻抗层析成像 被引量:2

Electrical impedance tomography of human lung cancer based on prior information
下载PDF
导出
摘要 电阻抗层析成像(EIT)的求解是一个非线性逆问题,其具有的不适定性是重建图像分辨率不高的原因之一。为改善不适定性,提高成像质量,引入先验信息和正则化项。利用器官组织电导率、胸腔器官分布结构等先验信息,构建正则化矩阵,并将正则化项引入扩展Kalman滤波(EKF)的状态空间表达式中,进行肺部癌变组织的图像重建。仿真结果表明,含有先验信息正则化项的扩展Kalman滤波算法可以改善癌变组织成像质量,降低图像相对误差。 Solution of electrical impedance tomography( EIT) is a nonlinear inverse problem and its ill-posed problem is one of the reasons of low resolution of reconstructed images. In order to improve the ill-posedness and improve imaging quality,prior information and regularization term are introduced. The regularization matrix is reconstructed using the prior information,including the conductivity of organs and tissues and distribution structure of the human thorax. The regularization term is introduced into the state space expression of extended Kalman filtering( EKF),and the images of lung cancer issue are reconstructed. The simulation results indicate that the proposed method improves the imaging quality of the cancer tissue and reduce the relative error of the reconstructed images.
作者 李佳 岳士弘 王亚茹 LI Jia;YUE Shi-hong;WANG Ya-ru(Department of Automation,School of Electrical and Information Engineering,Tianjin University,Tiandin 300072,China)
出处 《传感器与微系统》 CSCD 2018年第10期22-24,共3页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61573251)
关键词 电阻抗层析成像 扩展Kalman滤波 正则化矩阵 先验信息 electrical impedance tomography extended Kalman filtering (EKF) regularization matrix priorinformation
  • 相关文献

参考文献4

二级参考文献29

  • 1裴珂,彭黎辉,张宝芬.基于Kalman滤波的电容成像图像重建算法[J].清华大学学报(自然科学版),2005,45(10):1332-1334. 被引量:5
  • 2Golub GH, Vanloan CH. Matrix computations [ M ]. Baltimore : The Johns Hopkins University Press, 1989. 被引量:1
  • 3Hansen PC, Koldborg JT, Giuseppe R. An adaptive pruning algorithm for the discrete L-curve criterion [J]. J Comput Appl Math, 2007, 198(2): 483-492. 被引量:1
  • 4Golub GH, Matt UV. Generalized cross-validation for large scale problems [ J]. Journal of Computational and Graphical Statistics, 1996, 6(1):1-34. 被引量:1
  • 5Bauer F, Kindermann S. The quasi-optimality criterion for classical inverse problems [J]. 2008, 24(3) : 035002. 被引量:1
  • 6Cohen-Bacrie C, Goussard Y, Guardo R. Regularized reconstruction in electrical impedance tomography using a variance tmiformization constraint [J]. Medical Imaging, IEEE Transactions on, 1997, 16(5): 562-571. 被引量:1
  • 7Lionheart WRB, EIT reconstruction algorlthms: pitfalls, challenges and recent developments [ J ]. Physiological Measurement, 2004, 1: 125-142. 被引量:1
  • 8Brown BH, Medical impedance tomography and process impedance tomography: a brief review [ J]. Measurement Science and Technology, 2001, 8: 991- 996. 被引量:1
  • 9Cheney M, Isaacson D. Issues in electrical impedance imaging [ J]. IEEE Computational Sci Eng, 1995, 2: 53- 62. 被引量:1
  • 10Edic PM, Isaacson D, Saulnier GJ, et al. An iterative Newton- Raphson method to solve the inverse admittivity problem [J]. IEEE Transactions on Biomedical Engineering, 1998, 45(7) : 899 - 908. 被引量:1

共引文献55

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部