摘要
微分方程初值问题全局解的存在性是研究李雅普诺夫意义下稳定性的先决条件。该文旨在研究初值问题(1.10)-(1.11)全局解的存在性.首先得到了初值问题(1.10)-(1.11)局部解的存在性,推广了文献[14]的结果;然后基于得到的延拓定理,证明了初值问题(1.10)-(1.11)全局解的存在性和唯一性.
The existence of global solutions of initial value problems (IVP) for differential equations is a precondition to study their stability in Lyapunov sense. This paper aims to investigate the existence of the global solutions of the IVP (1.10)-(1.11). The existence of a local solution of the IVP (1.10)-(1.11) is obtained first, which is an extension of the paper [14]. Then based on our extension theorem, we prove that the existence and uniqueness of the global solution of the IVP (1.10)-(1.11).
作者
王俊
王天璐
温艳华
周先锋
Wang Jun;Wang Tianlu;Wen Yanhua;Zhou Xianfeng(School of Mathematical Sciences,Anhui University,Hefei 230601;Department of Mathematics,Northwestern Polytechnical University,Xi'an,710072)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2018年第5期903-910,共8页
Acta Mathematica Scientia
基金
国家自然科学基金(11471015
11371027
11601003)
安徽省自然科学基金(1508085MA01
1608085MA12
1708085MA15)
安徽省高等学校自然科学基金(KJ2016A023)~~
关键词
非线性
分数阶
存在性
时滞
全局解
Nonlinear
Fractional
Existence
Delay
Global solution.