期刊文献+

3D biofabrication for tubular tissue engineering 被引量:4

3D biofabrication for tubular tissue engineering
下载PDF
导出
摘要 The therapeutic replacement of diseased tubular tissue is hindered by the availability and suitability of current donor, autologous and synthetically derived protheses. Artificially created, tissue engineered, constructs have the potential to alleviate these concerns with reduced autoimmune response, high anatomical accuracy, long-term patency and growth potential. The advent of 3D bioprinting technology has further supplemented the technological toolbox, opening up new biofabrication research opportunities and expanding the therapeutic potential of the field. In this review, we highlight the challenges facing those seeking to create artificial tubular tissue with its associated complex macro- and microscopic architecture. Current biofabrication approaches, including 3D printing techniques, are reviewed and future directions suggested.
出处 《Bio-Design and Manufacturing》 2018年第2期89-100,共12页 生物设计与制造(英文)
基金 We acknowledge the funding support from UK Engineering and Physical Sciences Research Council (EPSRC) on the Doctoral Prize Fellowship (Grant No. EP/N509760/1) for IH and the EngD studentship (Grant No. EP/L015595/1) for JL. JZS is funded by Overseas Scholarship Council and Ministry of Education in China. We also acknowledge the funding support from China-UK Research and Innovation Partnership Fund: Newton Fund Ph.D. placement programme. We thank the National Natural Science Foundation of China (No. 21534007), and the Beijing Municipal Science & Technology Commission for their financial support.
关键词 Tubular organs Tissue engineering 3D printing Bio-inks 管状组织 生物打印技术 发展现状 生物设计
  • 相关文献

同被引文献12

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部