期刊文献+

Development of mRNA vaccines and their prophylactic and therapeutic applications 被引量:3

Development of mRNA vaccines and their prophylactic and therapeutic applications
原文传递
导出
摘要 Nucleic acid vaccines have attracted enormous attention for resolving the limitations of conventional vaccines using live attenuated viruses. Because nucleic acid vaccines can be produced rapidly in response to the emergence of new virus strains, they are more appropriate for the control of urgent epidemic and pandemic issues. In particular, messenger RNA (mRNA) vaccines have evolved as a new type of nucleic acid vaccines in accordance with their superior protein expression and a lack of mutagenesis as compared with DNA vaccines. Using mRNA vaccines, large amounts of target proteins can be expressed in immune cells for efficient immunization. For instance, antigen-specific vaccination is a feasible option involving the expression of specific antigens in antigen-presenting cells. Immunological reactions are modulated by expressing several proteins associated with stimulation or maturation of immune cells. In addition, mRNA vaccines can stimulate innate immunity through specific recognition by pattern recognition receptors. On the basis of these remarkable properties, mRNA vaccines have been used for prophylactic and therapeutic applications. This review highlights the role of mRNA vaccines as prophylactic vaccines for prevention of future infections and as therapeutic vaccines for cancer immunotherapy. In addition to the conventional type of mRNA vaccines, RNA replicons (self-amplifying mRNA vaccines) will be described. Nucleic acid vaccines have attracted enormous attention for resolving the limitations of conventional vaccines using live attenuated viruses. Because nucleic acid vaccines can be produced rapidly in response to the emergence of new virus strains, they are more appropriate for the control of urgent epidemic and pandemic issues. In particular, messenger RNA (mRNA) vaccines have evolved as a new type of nucleic acid vaccines in accordance with their superior protein expression and a lack of mutagenesis as compared with DNA vaccines. Using mRNA vaccines, large amounts of target proteins can be expressed in immune cells for efficient immunization. For instance, antigen-specific vaccination is a feasible option involving the expression of specific antigens in antigen-presenting cells. Immunological reactions are modulated by expressing several proteins associated with stimulation or maturation of immune cells. In addition, mRNA vaccines can stimulate innate immunity through specific recognition by pattern recognition receptors. On the basis of these remarkable properties, mRNA vaccines have been used for prophylactic and therapeutic applications. This review highlights the role of mRNA vaccines as prophylactic vaccines for prevention of future infections and as therapeutic vaccines for cancer immunotherapy. In addition to the conventional type of mRNA vaccines, RNA replicons (self-amplifying mRNA vaccines) will be described.
机构地区 College of Pharmacy
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第10期5173-5192,共20页 纳米研究(英文版)
关键词 messenger RNA (mRNA) vaccines prophylactic vaccines self-amplifying mRNA vaccines therapeutic vaccine cancer immunotherapy messenger RNA (mRNA) vaccines prophylactic vaccines self-amplifying mRNA vaccines therapeutic vaccine cancer immunotherapy
  • 相关文献

同被引文献11

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部