期刊文献+

结合改进的SIFT算法的双目视觉测距 被引量:7

Binocular vision ranging combined with improved SIFT algorithm
下载PDF
导出
摘要 针对采用双目视觉测距进行无人机实时巡线测距时计算复杂、实时性不高的问题,提出了结合改进的SIFT算法的双目视觉测距方案.该方案采用类单目的双目视觉模型,以减少计算变量;采用缩小尺度空间个数、降低特征向量维度、街区距离代替欧式距离的方法对传统的SIFT算法进行改进,以提高两摄像机同时拍摄的两幅图片同一特征点的匹配效率.结果表明:该方法匹配时间缩短了32%,测量最大误差率降至3. 75%,可满足无人机快速实时巡线测距的精度要求. In order to solve the problem of complex calculation and low real-time performance when using binocular vision ranging for UAV real-time line patrol, a binocular vision ranging scheme combining improved SIFT algorithm was proposed. A binocular vision model similar to monocular vision was adopted to reduce computation variables, the traditional SIFT algorithm was improved by reducing the number of scale spaces, reducing the dimension of feature vectors, and replacing the Euclidean distance with the block distance, so as to improve the matching efficiency of the uniform feature points of two images taken simuhaneously by two cameras. The results showed that the matching time was reduced by 32% and the maximum error rate was reduced to 3.75%. The method could meet the accuracy requirements of UAV fast real-time line patrol ranging.
作者 陈建明 时铭慧 CHEN Jianming;SHI Minghui(College of Electric Poewr,North China University of Water Resources and Electric Power,Zhengzhou 450045,China)
出处 《轻工学报》 CAS 2018年第5期90-96,共7页 Journal of Light Industry
关键词 双目视觉测距 摄像机标定 SIFT算法 binocular visionranging camera calibration SIFT algorithm
  • 相关文献

参考文献7

二级参考文献64

  • 1赵天云,郭雷,张利川.基于单目视觉的空间定位算法[J].西北工业大学学报,2009,27(1):47-51. 被引量:11
  • 2黄桂平,李广云,王保丰,叶声华.单目视觉测量技术研究[J].计量学报,2004,25(4):314-317. 被引量:91
  • 3查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 4MORAVEC H P. Rover visual obstacle avoidance [ C ]. The seventh International Joint Conference on Artificial Intelligence, Vancouver, British Columbia, 1981 : 785 -790. 被引量:1
  • 5HARRIS C, STEPHENS M. A combined corner and edge detector[ C]. The 4th Alvey Vision Conference, Manches- ter, UK, 1988 : 147-151. 被引量:1
  • 6LOWE D G. Distinctive image features from scale invari- ant key points [ J ]. International Journal of Computer Vi- sion,2004,60 (2) :91-110. 被引量:1
  • 7YAN K, SUKTHANKAR R. PCA-SIb~F:A more distinctive representation for local image descriptors[ C ]. IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition, Washington, USA, 2004 (2): 11/506- I1/513. 被引量:1
  • 8ABDEL-HAKIM A E, FARAG A A. CSIFT: A sift de- scriptor with color invariant characteristics [ C ]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA ,2006 : 1978-1983. 被引量:1
  • 9HERBERT B,ANDREAS E,TUYTELAARS T,et al. SURF: Speeded-Up Robust Features [ J ]. Computer Vision and Im- age Understanding ,2008,110(3) :346-359. 被引量:1
  • 10RACHEL L T, SIEBERT J P. Local feature extraction and matching on range images:2.5D SIFT[ J]. Computer Vi- sion and Image Understanding, 2009, 113 (12): 1235-1250. 被引量:1

共引文献142

同被引文献57

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部