期刊文献+

A Temporally Piecewise Adaptive Scaled Boundary Finite Element Method for Solving the Fuzzy Uncertain Viscoelastic Problems 被引量:1

A Temporally Piecewise Adaptive Scaled Boundary Finite Element Method for Solving the Fuzzy Uncertain Viscoelastic Problems
原文传递
导出
摘要 The numerical solutions for uncertain viscoelastic problems have important theo- retical and practical significance. The paper develops a new approach by combining the scaled boundary finite element method (SBFEM) and fuzzy arithmetic. For the viscoelastic problems with zero uncertainty, the SBFEM and the temporally piecewise adaptive algorithm is employed in the space domain and the time domain, respectively, in order to provide an accurate semi- analytical boundary-based approach and to ensure the accuracy of discretization in the time domain with different sizes of time step at the same time. The fuzzy arithmetic is used to address the uncertainty analysis of viscoelastic material parameters, and the transformation method is used for computation with the advantages of effectively avoiding overestimation and reducing the computational costs. Numerical examples are provided to test the performance of the proposed method. By comparing with the analytical solutions and the Monte Carlo method, satisfactory results are achieved. The numerical solutions for uncertain viscoelastic problems have important theo- retical and practical significance. The paper develops a new approach by combining the scaled boundary finite element method (SBFEM) and fuzzy arithmetic. For the viscoelastic problems with zero uncertainty, the SBFEM and the temporally piecewise adaptive algorithm is employed in the space domain and the time domain, respectively, in order to provide an accurate semi- analytical boundary-based approach and to ensure the accuracy of discretization in the time domain with different sizes of time step at the same time. The fuzzy arithmetic is used to address the uncertainty analysis of viscoelastic material parameters, and the transformation method is used for computation with the advantages of effectively avoiding overestimation and reducing the computational costs. Numerical examples are provided to test the performance of the proposed method. By comparing with the analytical solutions and the Monte Carlo method, satisfactory results are achieved.
出处 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第4期459-469,共11页 固体力学学报(英文版)
关键词 VISCOELASTICITY Uncertainty Scaled boundary finite element Fuzzy arithmetic Viscoelasticity Uncertainty Scaled boundary finite element Fuzzy arithmetic
  • 相关文献

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部