期刊文献+

一种基于支持向量机的安卓恶意软件新型检测方法 被引量:6

A NOVEL SVM-BASED DETECTION METHOD FOR ANDROID MALWARE
下载PDF
导出
摘要 针对安卓操作系统(Android)恶意软件检测问题,在总结现有检测方法的基础上,提出一种基于马尔可夫(Markov)链及支持向量机SVM的检测方法。该方法把应用程序(App)对安卓操作系统功能的调用序列当作离散时间Markov链,通过统计相邻系统调用对的出现频率来计算状态转移概率矩阵。把转移概率矩阵转化为特征向量,作为SVM的输入进行训练和检测,从而判定App的性质。因Markov链考虑了系统调用之间的关联关系,因此较传统检测方案,该方案利用系统调用序列能更好地刻画了App的动态行为。实验结果表明,与现有的检测方法相比,该方法显著提高了检测准确度。 In order to solve the issue of malware detection for Android, we summarized existing detection methods and then proposed a novel detection approach based on Markov chain and SVM in this paper. We treated the call sequence of application to Android as a discrete-time Markov chain. The the occurrence frequencies of the adjacent system call pairs state transition probability matrix was calculated by counting Then the matrix was transformed into the feature vector,which was trained and detected as the input of SVM, correlations between the system calls into account, our so as to detemfine the natureof App. As Markov chains took the proposal could describe the dynamic behaviors of application more accurately than the traditional detection methods by using the system call sequence. Experimental results prove that this method significantly improves the detection accuracy compared with the existing detection methods.
作者 张超钦 胡光武 王振龙 刘新宇 Zhang Chaoqin;Hu.Guangwu;Wang Zhenlong;Liu Xinyu(National Digital Switches System Engineering and Technological Researeher Center,Zhengzhou 450002,Henan,Chin;School of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,Henan,China;School of Computer Science,Shenzhen Institute of Information Technology,Shenzhen 518172,Guangdong,China;Graduate School at Shenzhen,Tsinghua University,Shenzhen 518055,Guangdong,China;Shenzhen Jinzhou Seiko Technology Co.,Ltd.,Shenzhen 518055,Guangdong,China)
出处 《计算机应用与软件》 北大核心 2018年第10期292-298,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61202358) 广东省自然科学基金项目(2015A030310492) 深圳市基础研究项目(JCYJ20160301152145171)
关键词 安卓操作系统 恶意软件检测 系统调用 支持向量机 马尔可夫链 Android Malware detection System call SVM Markov chain
  • 相关文献

参考文献1

二级参考文献9

  • 1JESSE B. Developing secure mobile application for Android[EB/OL] https://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf, 2008. 被引量:1
  • 2SCHMIDT A D, SCHMIDT H G, BATYUK L. Smartphone malware evolution revisited: Android next target[A]. Proceedings of the 4th IEEE/nternational Conference on Malicious and Unwanted Software [C]. USA, 2009. 1-7. 被引量:1
  • 3SCHMIDT A D, SCHMIDT H G, CLAUSEN J. Static analysis of executables for collaborative malware detection on android[A]. IEEE International Congress on Communication (ICC) 2009 - Communica- tion and Information Systems Security Symposium[C]. 2009. 被引量:1
  • 4ENCK W, ONGTANG M, MCDANIEL P. Understanding Android security[J]. IEEE Security and Privacy, 2009, 7(1):50-57. 被引量:1
  • 5SHABTAI A, FLEDEL Y, ELOVICI Y. Securing android-powered mobile devices using selinux[A]. IEEE Security and Privacy[C]. 2009.10-15. 被引量:1
  • 6BERGERON J, DEBBABI M, DESHARNAIS J. Static detection of malicious code in executable programs[A]. Proceedings of the Sym- posium on Requirements Engineering for Information Security[C]. USA, 2001.20-24. 被引量:1
  • 7MOSER A, KRUEGEL C, KIRDA E. Limits of static analysis for malware detection[A]. Proceedings of the 23rd Annual Computer Se- curity Application Conference[C]. Seoul, Korea, 2007.421-430. 被引量:1
  • 8BISHOP M A. The Art and Science of Computer Security[M]. Boston: Addison-Wesley Longman Publishing Co, 2002.213 -217. 被引量:1
  • 9http://www.symantec.com/securityresponse/writeup.j spdoeid=2011- 022303-3344-99[EB/OL].2001. 被引量:1

共引文献40

同被引文献46

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部