期刊文献+

基于机器学习的电网大数据降维方法 被引量:3

Big Data Dimensionality Reduction Method for Grid Based on Machine Learning
下载PDF
导出
摘要 随着智能电网的不断优化扩展及数据集的沉淀,海量大数据因为数据量太大、维数太高而陷入了"维数灾难"中,在工程实践中难以对其进行有效的研究。提出了运用拉普拉斯特征映射(Laplacian Eigenmaps)对电网大数据进行自适应学习并降维,运用降维后的数据在Hadoop平台上进行实验分析,证明其能有效地应用于智能电网大数据的降维运算。 With the continuous optimization and expansion of smart grid and the precipitation of data sets, the massive data is stepping into the "Curse of Dimensionality" because of the too large amount and too high dimension, which make it difficult to study the data effectively in engineering practice. This paper presents a method which employs Laplacian Eigenmaps to adaptively learn the grid big data and reduce its dimensionality, and then uses the data after dimensionality reduction for further analysis. The results of experimental analysis on the Hadoop platform show-that the proposed method can be effectively applied to dimensionality reduction of the smart grid big data.
作者 黄纯德 陈晓亮 朱珊珊 王晶华 郭光 HUANG Chunde;CHEN Xiaoliang;ZHU Shanshan;WANG JingHua;GUO Guang(Shanxi Electric Power Research Institute,Electric Power Company of State Grid,TaiYuan Shanxi 030001,China;Shanxi Electric Power Company of State Grid,TaiYuan Shanxi 030001,China;Beijing Zhongke Chuangyi Technology Co.,Ltd,BeiJing 100198,China)
出处 《计算机与网络》 2018年第18期69-71,共3页 Computer & Network
关键词 智能电网大数据 机器学习 拉普拉斯特征映射 数据降维 big data of smart grid machine learning Laplacian Eigenmaps dimensionality reduction
  • 相关文献

参考文献4

二级参考文献47

  • 1庞建业,夏晓宾,房牧.分布式发电对配电网继电保护的影响[J].继电器,2007,35(11):5-8. 被引量:83
  • 2Armbrust M,Fox A,Griffith R,et al.Above the clouds:A berkely view of cloud computing. . 2009 被引量:1
  • 3中国电机工程学会信息化专业委员会.中国电力大数据发展白皮书[M].北京:中国电力出版社,2013:10-15. 被引量:2
  • 4Clifford Lynch. Big data:How do your data grow[J]. Nature,2008, 455(7209) :28-29. 被引量:1
  • 5Paul C, Chris Eaton,Dirk Deroos, et al. Understanding big data analytics for Enterprise Class Hadoop and streaming data[M]. New Youk:McGraw Hill, 2012. 被引量:1
  • 6McKinsey Global Institute. Big data:Next to the fore-front of innovation, competition and productivity[R]. New Youk:Mckinsey & Company, 2011. 被引量:1
  • 7Huang Zhiwei, Gao Tian, Zhang Huaving, et al.Tran-sient power quality assessment based on big data anal-ysis [C]. China International Conference, Shenzhen,2014. 被引量:1
  • 8Yang C, Liu C, Zhang X, et al.A time efficient ap-proach for detecting errors in big sensor data on cloud [J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 26(2):329-339. 被引量:1
  • 9Rurnett R O J, Butts M M, Cease T W, et al. Syn-chronized phasor measurements of a power system e-vent[J]. IEEE Transactions on Power Systems, 1994, 9(3):1643-1650. 被引量:1
  • 10Aman S, Simmhan Y, Prasanna V K. Holistie meas-ures for evaluating prediction models in smart grids [J]. IEEE Transactions on Knowledge and Data Engi-neering, 2014,27(2):475-488. 被引量:1

共引文献277

同被引文献15

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部