期刊文献+

基于相关滤波的目标跟踪的研究 被引量:1

The research of correlation filter based on object tracking
下载PDF
导出
摘要 大多数现代的跟踪器的核心元素是一个判别式的分类器,这个分类器的任务是去区分目标区域和周围的环境。本文基于基础的相关滤波的方法,并对其进行改进的目的,通过在相关滤波的计算中引入不同的尺度信息,较好的手动设计的特征和更具表示性的深度特征,然后在OTB2013数据库上对这些不同的方法进行实验,得到基于深度特征和多尺度信息的方法比基础的相关滤波的方法的重叠精度(Overlap Precision,OP)提高了16.68%(从62.77%到79.45%),从而验证了这些额外信息的引入可以很大地提升跟踪性能。 The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. In this paper, we aim to improve the object tracking performance based on the basic correlation filter method. By introducing multi-scale information, better hand-crafted feature, representative deep feature and experimenting on OTB2013 benchmark, the method using multi-scale and deep feature gets 16.68% absolute performance improvement from 62.77% to 79.45% compared to the basic method. The experiment result verifies that object tracking performance can improve greatly by introducing extra information.
作者 董艳兵 DONG Yan-bing(Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China;School of Information Science& Technoloy ShanghaiTech University,Shanghai 201210,China;University of Chinese Academy of Sciences,Beijing 101407,China)
出处 《电子设计工程》 2018年第20期6-9,13,共5页 Electronic Design Engineering
关键词 目标跟踪 相关滤波 判别式分类器 多尺度 深度特征 object tracking correlation filter discriminative classifier multi-scale deep feature
  • 相关文献

参考文献7

二级参考文献151

  • 1桑爱军,宋建中.基于跟踪度的Gabor小波特征跟踪方法的研究[J].光学技术,2005,31(4):588-591. 被引量:5
  • 2常发亮,马丽,乔谊正.遮挡情况下基于特征相关匹配的目标跟踪算法[J].中国图象图形学报,2006,11(6):877-882. 被引量:16
  • 3江泽涛,赵荣椿,黎明.一种基于相关的分层匹配与目标跟踪方法[J].航空学报,2006,27(4):670-675. 被引量:8
  • 4ELGAMMAL A, DURAISWAMI R,HARWOOD D,et al.. Background and foreground modeling using nonparametric ker- nel density estimation for visual surveillance [ J ]. IEEE,2002,90 ( 7 ) : 1151-1163. 被引量:1
  • 5AVIDAN S. Support vector tracking[ J]. IEEE Trans. Part, Analy. Mach. Intell. ,2004,26(8) : 1064-1072. 被引量:1
  • 6PARK S,AGGARWAL J K. A hierarchical bayesian network for event recognition of human actions and interactions. Mul- timed[J]. Syst. ,2004,10(2):164-179. 被引量:1
  • 7VEENMAN C, REINDERS M, BACKER E. Resolving motion correspondence for densely moving points[ J ]. IEEE Trans. Part. Analy. Mach. Intell. ,2001,23(1) :54-72. 被引量:1
  • 8SHAFIQUE K, SHAH M. A non-iterative greedy algorithm for multi-frame point correspondence [ J ]. IEEE Trans. Part. Analy. Mach. lntell. ,2005,27( 1 ) : 110-115. 被引量:1
  • 9COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [ J]. IEEE Trans. Part. Analy. Mach. Intell., 2003,25:564-575. 被引量:1
  • 10BLACK M,JEPSON A. Eigentraeking:robust matching and tracking of articulated objects using a view-based representa- tion[J]. Int. J. Comput. Vision,1998,26(1) :63-84. 被引量:1

共引文献666

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部