期刊文献+

Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake 被引量:4

Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake
原文传递
导出
摘要 Soil respiration in wetlands surrounding lakes is a vital component of the soil carbon cycle in arid regions. However, information remains limited on the soil respiration around highly saline lakes during the plant growing season. Here, we aimed to evaluate diurnal and seasonal variation in soil respiration to elucidate the controlling factors in the wetland of Ebinur Lake, Xinjiang Uygur Autonomous Region, western China. We used a soil carbon flux automatic analyzer (LI-840A) to measure soil respiration rates during the growing season (April to November) in two fields covered by reeds and tamarisk and one field with no vegetation (bare soil) from 2015 to 2016. The results showed a single peak in the diurnal pattern of soil respiration from 11:00 to 17:00 for plots covered in reeds, tamarisk, and bare soil, with minimum values being detected from 03:00 to 07:00. During the growing season, the soil respiration of reeds and tamarisk peaked during the thriving period (4.16 and 3.75 μmol.m-2.s-1, respectively), while that of bare soil peaked during the intermediate growth period (0.74 pmol-m-2-s-1). The soil respiration in all three plots was lowest during the wintering period (0.08, 0.09, and -0.87 μmol.m-2.s-1, respectively). Air temperature and relative humidity significantly influenced soil respiration. A significant linear relationship was detected between soil respiration and soil temperature for reeds, tamarisk, and bare soil. The average Q10 of reeds and tamarisk were larger than that of bare soil. However, soil moisture content was not the main factor controlling soil respiration. Soil respiration was negatively correlated with soil pH and soil salinity in all three plot types. In contrast, soil respiration was positively correlated with organic carbon. Overall,CO2 emissions and greenhouse gases had a relatively weak effect on the wetlands surrounding the highly saline Ebinur Lake. Soil respiration in wetlands surrounding lakes is a vital component of the soil carbon cycle in arid regions. However, information remains limited on the soil respiration around highly saline lakes during the plant growing season. Here, we aimed to evaluate diurnal and seasonal variation in soil respiration to elucidate the controlling factors in the wetland of Ebinur Lake, Xinjiang Uygur Autonomous Region, western China. We used a soil carbon flux automatic analyzer (LI-840A) to measure soil respiration rates during the growing season (April to November) in two fields covered by reeds and tamarisk and one field with no vegetation (bare soil) from 2015 to 2016. The results showed a single peak in the diurnal pattern of soil respiration from 11:00 to 17:00 for plots covered in reeds, tamarisk, and bare soil, with minimum values being detected from 03:00 to 07:00. During the growing season, the soil respiration of reeds and tamarisk peaked during the thriving period (4.16 and 3.75 μmol.m-2.s-1, respectively), while that of bare soil peaked during the intermediate growth period (0.74 pmol-m-2-s-1). The soil respiration in all three plots was lowest during the wintering period (0.08, 0.09, and -0.87 μmol.m-2.s-1, respectively). Air temperature and relative humidity significantly influenced soil respiration. A significant linear relationship was detected between soil respiration and soil temperature for reeds, tamarisk, and bare soil. The average Q10 of reeds and tamarisk were larger than that of bare soil. However, soil moisture content was not the main factor controlling soil respiration. Soil respiration was negatively correlated with soil pH and soil salinity in all three plot types. In contrast, soil respiration was positively correlated with organic carbon. Overall,CO2 emissions and greenhouse gases had a relatively weak effect on the wetlands surrounding the highly saline Ebinur Lake.
出处 《Frontiers of Earth Science》 SCIE CAS CSCD 2018年第3期611-624,共14页 地球科学前沿(英文版)
关键词 Ebinur Lake soil respiration high salinity soil temperature soil moisture Ebinur Lake soil respiration high salinity soil temperature soil moisture
  • 相关文献

同被引文献57

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部