摘要
In this paper, we study the boundedness of the Hausdorff operator H_? on the real line R. First, we start with an easy case by establishing the boundedness of the Hausdorff operator on the Lebesgue space L^p(R)and the Hardy space H^1(R). The key idea is to reformulate H_? as a Calder′on-Zygmund convolution operator,from which its boundedness is proved by verifying the Hrmander condition of the convolution kernel. Secondly,to prove the boundedness on the Hardy space H^p(R) with 0 < p < 1, we rewrite the Hausdorff operator as a singular integral operator with the non-convolution kernel. This novel reformulation, in combination with the Taibleson-Weiss molecular characterization of H^p(R) spaces, enables us to obtain the desired results. Those results significantly extend the known boundedness of the Hausdorff operator on H^1(R).
In this paper, we study the boundedness of the Hausdorff operator H_? on the real line R. First, we start with an easy case by establishing the boundedness of the Hausdorff operator on the Lebesgue space L^p(R)and the Hardy space H^1(R). The key idea is to reformulate H_? as a Calder′on-Zygmund convolution operator,from which its boundedness is proved by verifying the Hrmander condition of the convolution kernel. Secondly,to prove the boundedness on the Hardy space H^p(R) with 0 〈 p 〈 1, we rewrite the Hausdorff operator as a singular integral operator with the non-convolution kernel. This novel reformulation, in combination with the Taibleson-Weiss molecular characterization of H^p(R) spaces, enables us to obtain the desired results. Those results significantly extend the known boundedness of the Hausdorff operator on H^1(R).
基金
supported by National Natural Science Foundation of China (Grant Nos. 11671363, 11471288 and 11601456)