期刊文献+

基于极点对称模态分解和支持向量机的船用齿轮箱故障诊断 被引量:1

下载PDF
导出
摘要 针对船用齿轮箱故障难以识别的问题,提出了将极点对称模态分解(Extreme-point Symmetric Mode Decomposition, ESMD)和支持向量机(Support Vector Machine, SVM)相结合的故障诊断方法。先将船用齿轮箱振动信号进行ESMD分解,可得到一系列模态和一条最佳自适应全局均线。以分解模态与原始信号的能量比值为相关度衡量标准,将相关度较高的前三个模态分别作奇异值分解并得到奇异值矩阵。经过归一化处理后,输入支持向量机训练获得多分类诊断模型,并进行测试。测试结果表明,相比经验模态分解(Empirical Mode Decomposition, EMD)与SVM结合的方法,本文的方法能更好地对船用齿轮箱故障作出诊断和预测。
作者 张喻
出处 《中国水运》 2018年第10期43-46,共4页
  • 相关文献

参考文献11

二级参考文献102

共引文献340

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部