期刊文献+

基于数值模型和解析模型的钢轨波导特性分析 被引量:3

Analysis of Guided Wave Behaviour in Rails Using Numerical or Analytical Models
下载PDF
导出
摘要 钢轨振动由沿钢轨传递的各类导波构成,是铁路滚动噪声的主要贡献者.为了研究铁路轨道的动力特性,分别基于铁木辛柯梁理论和波导有限元法建立了两种分析模型,推导自由波响应和受迫响应的求解过程,以波数、群速度、速度导纳和衰减率为指标,分析了两种模型条件下钢轨的波导特性.研究结果表明:波导有限元模型包含了钢轨横截面所有的变形特征,可表征6 kHz内钢轨中的8种导波及其特性,反映导波波型交换、群速度互换的现象,以及高阶导波激发引起的导纳峰值;铁木辛柯梁模型可识别包括弯曲波、扭转波和纵波在内的5种钢轨导波,无法揭示截止频率在1.5 kHz以上与钢轨截面变形相关的导波;铁木辛柯梁模型可给出2 kHz内合理的钢轨垂向原点速度导纳计算结果. The vibration of rails is a major contributor to railway rolling noise,and consists of different guided waves that propagate along the rail. To study the dynamic behaviour of a railway track,models based on the Timoshenko beam theory and the waveguide finite-element method were established. The solution procedures to obtain the free wave response and the forced response for each model were determined. The characteristics of guided waves in rails,such as wavenumber,group velocity,mobility,and decay rate,were analysed based on two different models. The waveguide finite-element model,which includes all the features of rail cross-section deformation,makes it possible to identify eight kinds of guided waves in rails within a frequency range of as much as 6 kHz. Moreover,the phenomena of wave mode exchange and group velocity exchange between waves are discussed,as well as the peak in the mobility caused by the excitation of the higher-order wave mode. The Timoshenko beam model can identify five of these wave modes,including those for bending,torsion,and extensional waves,but it cannot identify the ones associated with cross-section deformations that cut on at frequencies of more than 1.5 kHz. The Timoshenko beam model provides acceptable results for point mobilities of as much as 2 kHz.
作者 代丰 刘学毅 朱颖 汤普森.代维 杨吉忠 DAI Feng;LIU Xueyi;ZHU Ying;THOMPSON David;YANG Jizhong(China Railway Eryuan Engineering Group Co.Ltd.,Chengdu 610031,China;MOE Key Laboratory of High-speed Rail-way Engineering,Southwest Jiaotong University,Chengdu 610031,China;Institute of Sound and Vibration Research,Uni-versity of Southampton,Southampton SO17 1B J,United Kingdom)
出处 《西南交通大学学报》 EI CSCD 北大核心 2018年第5期951-957,1016,共8页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(U1434208 U1534203) 四川省科技支撑计划资助项目(2016GZ0333 2018GZ0056) 四川省科技服务业示范项目(2016GFW0137)
关键词 波导有限元 铁木辛柯梁 群速度 速度导纳 铁路轨道 waveguide finite element Timoshenko beam group velocity mobility railway track
  • 相关文献

参考文献3

二级参考文献18

  • 1杨清雷,傅圣雪,王泽华.基于固体声检测的列车接近报警系统设计[J].青岛科技大学学报(自然科学版),2005,26(6):523-525. 被引量:3
  • 2COCCIA S, BARTOLI I, MARZANI A, et al. Numerical and experimental study of guided wave for detection of defects in the rail[J]. NDT&E International, 2011, 44 (2): 93-100. 被引量:1
  • 3MEAD D J. Wave propagation and natural modes in periodic system: Monocoupled system[J]. Journal of Sound and Vibration, 1975, 40(1): 1-18. 被引量:1
  • 4THOMPSON D J. Wheel-rail noise generation, part h Introduction and interaction model[J]. Journal of Sound and Vibration, 1993, 161(4): 387-400. 被引量:1
  • 5WU T X, THOMPSON D J. A double timoshenko beam model for vertical vibration analysis of railway track at high frequency[J]. Journal of Sound and Vibration, 1999, 224(2): 329-348. 被引量:1
  • 6SANDERSON R. The application of finite element modeling to guided ultrasonic waves in rails[J]. Insight, 2002, 44(6): 359-363. 被引量:1
  • 7[ GAVRIC L. Computation of propagative waves in free rail using a finite element technique[J]. Journal of Sound and Vibration, 1995, 185(3): 531-543. 被引量:1
  • 8GAY L. Dynamic modeling of railway track based on wave propagation [J]. Journal of Sound and Vibration, 1996, 195(3): 477-505. 被引量:1
  • 9HAYSAHI T. Analysis of flexural mode focusing by a semi-analytical finite element method[J]. Journal of Acoustical Society of America, 2003, 113(3): 1241-1248. 被引量:1
  • 10LOVEDAY P W. Guided wave inspection and monitoring of railway track[J]. Journal of Nondestruvtive Evaluation, 2012, 31(4): 303-309. 被引量:1

共引文献13

同被引文献23

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部