期刊文献+

大规模风电接入下基于序数效用论的日前低碳调度决策模型 被引量:1

Day-ahead Low Carbon Scheduling Decision Model Based on the Theory of Ordinal Utility with Significant Wind Power Generation
下载PDF
导出
摘要 针对电力市场环境下含大规模风电系统的协调运行问题,提出了一种基于序数效用论的兼顾调度费用与碳排放量目标的调度决策方法,建立了大规模风电接入下日前调度决策的两阶段协调优化模型,该模型以序数效用论体现决策者在调度经济性与碳排放量之间的效用偏好,以多场景方法刻画风电出力的不确定性,采用允许适度弃风的系统综合效用最优的调度模式实现风电的合理消纳。最后通过算例应用验证了所提模型的有效性。 To cope with the coordinated operation of power system with wind power accommodation in electricity market, considering the economic and CO2 emission objects based on the theory of ordinal utility, this paper established a two-stage stochastic programming problem of day-ahead low-carbon scheduling decision with large-scale wind power. The utility theory was used to reflect the utility preference between economic and emission objects. The uncertainty of wind power was modeled via scenarios method, and the model permitted reasonable curtailment of wind power to achieve reasonable accommodation. The effectiveness of the proposed model was validated by numerical results.
作者 范臻 娄素华 吴耀武 吴迪 刘柏良 FAN Zhen1 , LOU Su-hua1 , WU Yao-wu1 , WU Di2 , LIU Bai-liang3(1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430024, China; 2. State Grid Suzhou Power Supply Company, Suzhou 215000, China; 3. Economy and Technology Institute, State Grid Jiangsu Electric Power Company, Nanjing 210008, Chin)
出处 《水电能源科学》 北大核心 2018年第9期212-216,共5页 Water Resources and Power
基金 国家重点研发计划(2017YFB0902202) 国家自然科学基金项目(51677076) 国家电网公司总部科技项目
关键词 风电消纳 调度决策 序数效用论 电力市场 CO2排放 wind power accommodation dispatching decision theory of ordinal utility power market CO2 emission
  • 相关文献

参考文献6

二级参考文献88

  • 1杨明,韩学山,王士柏,查浩.不确定运行条件下电力系统鲁棒调度的基础研究[J].中国电机工程学报,2011,31(S1):100-107. 被引量:50
  • 2陈海焱,陈金富,段献忠.含风电场电力系统经济调度的模糊建模及优化算法[J].电力系统自动化,2006,30(2):22-26. 被引量:217
  • 3BOX G E P, JENKINS G M. Time series analysis: forecasting and control. 2nd ed. San Francisco, CA, USA: Holden-Day Press, 1970. 被引量:1
  • 4MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 1979, 21(1): 239-245. 被引量:1
  • 5JIRUTITIJAROEN P, SINGH C. Reliability constrained multi-area adequacy planning using stochastic programming with sample-average approximations. IEEE Trans on Power Systems, 2008, 23(2): 504-513. 被引量:1
  • 6Latin hypercube sampling [EB/OL]. [2009-01-17]. http:// www. vosesoftware. com/ModelRiskHelp/index. htm# Monte Carlo_simulation/Latin_ Hypercube_sampling. htm. 被引量:1
  • 7KAUT M, WALLACE S W. Evaluation of scenario generation methods for stochastic programming. Pacific Journal of Optimization, 2007, 3(2): 257-271. 被引量:1
  • 8DOMENICA N D, BIRBILIS G, MITRA G. Stochastic programming and scenario generation within a simulation framework: an information systems perspective. Decision Support Systems, 2007, 42(4): 2197-2218. 被引量:1
  • 9KAUT M. Scenario generation for stochastic programming: a practical introduction tutorial on scenario reduction [EB/OL]. [2006-07-21]. http://work. michalkaut.net/papers etc/scengen_intro. pdf. 被引量:1
  • 10SODER L. Simulation of wind speed forecast errors for operation planning of multi area power system//Proceedings of 2004 International Conference on Probabilistic Methods Applied to Power Systems, September 12-16, 2004, Ames, IA, USA: 723-728. 被引量:1

共引文献187

同被引文献34

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部