摘要
设△是一个有限无圈的箭图,引入了由△所决定的偏周期预投射代数,它是一个定义在周期为p的稳定平移箭图Z△/(T^p)上的代数,记为∏(Q(Δ,p),J).当周期p=1时,偏周期预投射代数就是偏预投射代数.推广了Eting和Eu的方法并得到无圈箭图△所决定的偏周期预投射代数∏((Q(Δ,p)),J)的Hilbert级数的计算公式.
Let Δ be a finite quiver without cycle. This paper introduces the concept of partial period preprojective algebra defined over Δ, which is a algebra defined on stable translation quiver Z△/(T^p) of period p, denoted by ∏(Q(Δ,p),J). When p = 1, partial period preprojective algebra is just partial preprojective algebra. We generalize Eting and Eu's way and obtain the formula of the Hilbert series of partial period preprojective algebra ∏((Q(Δ,p)),J) decided by Δ.
作者
吴春生
黄海松
WU Chun-sheng1, HUANG Hal-song2(1. School of Mathematics and Information Engineering in Lianyungang Teacher College, Lianyungang 222006, China) (2. Department of Basic and Public Education in Zhengzhou Technology and Business University, Zhengzhou 451400, China)
出处
《数学的实践与认识》
北大核心
2018年第17期198-202,共5页
Mathematics in Practice and Theory
基金
江苏省333工程科研项目(BRA2015137)
河南省高等学校重点科研项目(18A110031)
连云港市“521高层次人才培养工程”资助项目