期刊文献+

枯树生花于“哥德巴赫猜想”之完证

Proof of "Goldbach Conjecture" and Letting an Old Method Produce New Vitality
下载PDF
导出
摘要 为了证明著名的哥德巴赫猜想("1+1"),笔者对传统的"取整函数"及"取小数函数"进行了重新定义,其目的是让这两个函数适用于复数域,这样就可以利用复变函数的相关理论以及解方程的相关原理对哥猜("1+1")展开分析了,第二个亮点是笔者给这两个函数设计了专用符号,第三个亮点是借助Γ函数巧妙构造出了三个重要的函数和一个核心的方程。总之,历经了漫长时日的斟酌分析、艰深的探究和无数次的修补完善,最后才能够或才敢确信自己证明了这个百年难题——哥德巴赫猜想。 In order to prove the famous Goldbach conjecture("1+1"),the traditional "rounding function" and "decimal function" are redefined by the author,so that the two functions can be applied to the complex number domain.Then we can analyze the Goldbach conjecture by using the theory of complex functions and the related principles of solving equations.The second highlight is that the author has designed the special symbols for the two functions,and the third highlight is the ingenious construction of three important functions and a core equation with the aid of the gamma function.In short,after a long time of careful analysis,hard exploration and countless repairs and improvements,only at last can he be convinced that he has proved this centenary problem—the Goldbach conjecture.
作者 马祥虎 Ma Xianghu
出处 《科教文汇》 2018年第27期63-66,共4页 Journal of Science and Education
关键词 哥猜(“1+1”) Γ函数 实取尾函数 复取尾函数 空心花括号 方程的根 Goldbach conjecture ("1+1") gamma function real number tail function complex number tail function hollowed curly braces roots of equation
  • 相关文献

参考文献6

  • 1李世雄著..代数方程与置换群[M].上海:上海教育出版社,1981:93.
  • 2司钊, 司琳..哥德巴赫猜想与孪生素数猜想[M],2002.
  • 3钟玉泉编..复变函数论 第3版[M].北京:高等教育出版社,2004:378.
  • 4潘承洞,潘承彪著..解析数论基础[M].北京:科学出版社,1991:914.
  • 5潘承洞,潘承彪著..初等数论[M].北京:北京大学出版社,1992:615.
  • 6闵嗣鹤,严士健编..初等数论[M].北京:高等教育出版社,2003:218.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部