期刊文献+

基于大数据的智能交通系统浅析 被引量:1

Large data-based analysis of the intelligent tranffic system
原文传递
导出
摘要 分析了交通大数据的特征、数据来源和研究方法.大数据驱动的智能交通系统具有多样的检测手段、快速的网络传输、高效的数据处理平台等优势.完善智能交通系统应从建立完善的交通数据检测体系,建立精确的交通系统模型,加快智能交通产业化进程等方面进行. This paper analyzes the big data of intelligent traffics in relation to source and methods such as varied detections,fast network transmission and efficient data processing.This paper attempts to improve the intelligent traffic system via detection and accurate processing.
作者 郝娜 李鑫 HAO Na;LI Xin(Department of Electrics and Electronics,Shijiazhuang University of Applied Technology,Shijiazhuang,Hebei 050081,China)
出处 《石家庄职业技术学院学报》 2018年第4期31-33,共3页 Journal of Shijiazhuang College of Applied Technology
关键词 大数据 智能交通系统 数据检测 big data intelligent tranffic system data detection
  • 相关文献

参考文献6

二级参考文献58

  • 1徐岩宇,黄中祥,李环燕.日本通用交通控制系统计划中的动态线路引导系统[J].国外公路,1996,16(3):16-19. 被引量:1
  • 2WANG Jun, GUAN Wei. A practical Kalman filter model of short-term traffic forecasting of urban ring road [C]//10th World Multi-Conference on Systemics, Cybernetics and Informatics. Orlando: Proceedings, 2006: 94 - 98. 被引量:1
  • 3Smith B L, Demetsky M J. Short-term traffic flow prediction: Neural network approach [J]. Transportation Research Record, 1994(1453): 98-104. 被引量:1
  • 4Cirianni F, Leonardi G. The application of a neural network on a study of noise pollution in urban transport: A case in Villa S[J]. Giovanni Air Pollution XII 2004(14) : 559-570. 被引量:1
  • 5YIN Hongbin, XU Jianmin. Urban traffic flow prediction using a fuzzy-neural approach [J]. Transportation Research (Part C), 2002, 10(2): 85-98. 被引量:1
  • 6Smith B L, Oswald R K. Effects of parameter selection on forecast accuracy and execution time in nonparametric regression [C]//Intelligent Transportation Syst Conf Procs Dearborn: IEEE, 2000, 252- 257. 被引量:1
  • 7Smith B L, Williams B M, Oswald R K. Comparison of parametrie and nonparametrie models for traffic flow forecasting [J].Transportation Research (Part C), 2002, 10(4) : 303 - 321. 被引量:1
  • 8童明荣,薛恒新,林琳.基于季节ARIMA模型的公路交通量预测[J].公路交通科技,2008,25(1):124-128. 被引量:27
  • 9Gore A. The digital earth: Understanding our planet in the 21st century[J]. Photogrammetric Engineering and Remote Sensing, 1999, 65(5): 528. 被引量:1
  • 10Palmisano S. A smarter planet: The next leadership agenda[R]. New York: IBM, 2008. 被引量:1

共引文献346

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部