摘要
单层球面网壳结构具有受力合理、造型新颖和抗震性能优越等特点,其静力及动力稳定性一直是国内外研究的热点问题.网壳上部作用的雪荷载分布形式受网壳几何形态、光照和风向等诸多因素影响,雪荷载分布形式直接影响着网壳的失稳形态.为理清网壳在各种雪荷载分布形式作用下的失稳机理及确定雪荷载的最不利分布形式,首先采用分区组合法(径向与环向)对各种雪荷载分布形式作用下的网壳稳定极限承载力展开了系统研究,得出了由分区组合法得到的雪荷载最不利分布形式.针对分区组合法计算量偏大的特点,基于恒载作用的网壳特征值屈曲分析,提出了一种确定雪荷载最不利分布的方法.最后对网壳在雪荷载作用下的失效机理进行了研究探讨.计算表明,本文所提出的方法比分区组合法更为便捷实用.本文结论可为网壳结构的设计提供参考.
Single-layer spherical reticulated shell has the advantages of reasonable mechanical performance,beautiful shape and strong aseismic characteristics,etc.The static and dynamic stability of reticulated shells is always a hot issue.The distribution pattern of snow load,which directly influences the unstable state of shell,is affected by the shape of shell,sunlight and wind.To figure out the unstable mechanism of shell under a variety of snow load distributions and ascertain the most unfavorable distribution of snow load,the location combination method(in radial and loop directions)is firstly utilized to systematically research the load-carrying capacity of reticulated shell under the action of snow load,and the most unfavorable distribution is found out.To deal with the excessive computational amount of the location combination method,another method is put forward to verify the most unfavorable distribution of snow load basing on the eigenvalue buckling analysis of shell under snow load.Finally,unstable mechanism of reticulated shells under snow load is discussed.Numerical results show that the method presented in this paper is more convenient and practical than the location combination method.Results from this study provide reference for the design of reticulated shell structures.
作者
李会军
肖姚
张凯宝
陈垚垚
胡清阳
LI Hui-jun;XIAO Yao;ZHANG Kai-bao;CHEN Yao-yao;HU Qing-yang(College of Water Resource;and Architectural Engineering,Northwest A&F University,Yangling 712100,China)
出处
《空间结构》
CSCD
北大核心
2018年第3期10-19,共10页
Spatial Structures
基金
国家自然科学基金项目(51408490)
大学生创新创业训练计划项目(201710712046)
关键词
单层球面网壳
雪荷载
最不利分布形式
稳定承载力
特征值屈曲分析
single-layer spherical reticulated shell
snow load
most unfavorable distribution
stability load-carrying capacity
eigenvalue buckling analysis