摘要
The relationship between the radar reflectivity factor (Z) and the rainfall rate (R) is recalculated based on radar ob- servations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather stations over the Yangtze-Huaihe River basin. The data were collected by the National 973 Project from June to July 2013 for severe convective weather events. The Z-R relationship is combined with an empirical qr-R relationship to obtain a new Z-qr relationship, which is then used to correct the observational operator for radar reflectivity in the three-dimensional variational (3DVar) data assimilation system of the Weather Research and Forecasting (WRF) model to im-prove the analysis and prediction of severe convective weather over the Yangtze--Huaihe River basin. The perform- ance of the corrected reflectivity operator used in the WRF 3DVar data assimilation system is tested with a heavy rain event that occurred over Jiangsu and Anhui provinces and the surrounding regions on 23 June 2013. It is noted that the observations for this event are not included in the calculation of the Z-R relationship. Three experiments are conducted with the WRF model and its 3DVar system, including a control run without the assimilation of reflectivity data and two assimilation experiments with the original and corrected refleetivity operators. The experimental results show that the assimilation of radar reflectivity data has a positive impact on the rainfall forecast within a few hours with either the original or corrected reflectivity operators, but the corrected reflectivity operator achieves a better per-forrnance on the rainfall forecast than the original operator. The corrected reflectivity operator extends the effective time of radar data assimilation for the prediction of strong reflectivity. The physical variables analyzed with the corrected reflectivity operator present more reasonable mesoscale structures than those obtained with the original re-flectivity operator. This suggests that the new sta
The relationship between the radar reflectivity factor (Z) and the rainfall rate (R) is recalculated based on radar ob- servations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather stations over the Yangtze-Huaihe River basin. The data were collected by the National 973 Project from June to July 2013 for severe convective weather events. The Z-R relationship is combined with an empirical qr-R relationship to obtain a new Z-qr relationship, which is then used to correct the observational operator for radar reflectivity in the three-dimensional variational (3DVar) data assimilation system of the Weather Research and Forecasting (WRF) model to im-prove the analysis and prediction of severe convective weather over the Yangtze--Huaihe River basin. The perform- ance of the corrected reflectivity operator used in the WRF 3DVar data assimilation system is tested with a heavy rain event that occurred over Jiangsu and Anhui provinces and the surrounding regions on 23 June 2013. It is noted that the observations for this event are not included in the calculation of the Z-R relationship. Three experiments are conducted with the WRF model and its 3DVar system, including a control run without the assimilation of reflectivity data and two assimilation experiments with the original and corrected refleetivity operators. The experimental results show that the assimilation of radar reflectivity data has a positive impact on the rainfall forecast within a few hours with either the original or corrected reflectivity operators, but the corrected reflectivity operator achieves a better per-forrnance on the rainfall forecast than the original operator. The corrected reflectivity operator extends the effective time of radar data assimilation for the prediction of strong reflectivity. The physical variables analyzed with the corrected reflectivity operator present more reasonable mesoscale structures than those obtained with the original re-flectivity operator. This suggests that the new sta
基金
Supported by the National(Key)Basic Research and Development(973)Program of China(2013CB430102)
National Natural Science Foundation of China(41275102 and 41330527)