期刊文献+

(k,l)-递归极大平面图的结构 被引量:2

The Structure of (k,l)-recursive Maximal Planar Graph
下载PDF
导出
摘要 对于一个平面图G实施扩3-轮运算是指在G的某个三角形面xyz内添加一个新顶点v,使v与x, y, z均相邻,最后得到一个阶为|V(G)|+1的平面图的过程。一个递归极大平面图是指从平面图K_4出发,逐次实施扩3-轮运算而得到的极大平面图。所谓一个(k,l)-递归极大平面图是指一个递归极大平面图,它恰好有k个度为3的顶点,并且任意两个3度顶点之间的距离均为l。该文对(k,l)-递归极大平面图的存在性问题做了探讨,刻画了(3,2)-及(2,3)-递归极大平面图的结构。 For a maximal planar graph G, the operation of extending 3-wheel is a process from G to GVv, where v is a new vertex embedded in some triangular face xyz of G and GVv is a graph of order |V(G)|+1 obtained from G by connecting v to each one of x, y, z with one edge. A recursive maximal planar graph is a maximal planar graph obtained from K4 by extending 3-wheel continuously. A (k,l)-recursive maximal planar graph is a recursive maximal planar graph with exactly k vertices of degree 3 so that the distance between arbitrary two vertices of degree k is l. The existence of (k,l)-recursive maximal planar graph is discussed and the structures of (3,2)-as well as (2,3)-recursive maximal planar graphs are described.
作者 陈祥恩 李婷 CHEN Xiang'en;LI Ting(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第9期2281-2286,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(11761064 61163037 61163054)~~
关键词 平面图 极大平面图 扩3-轮 递归极大平面图 Planar graph Maximal planar graph Extending 3-wheel Recursive maximal planar graph
  • 相关文献

参考文献7

二级参考文献236

  • 1许进.RECURSIVE FORMULA FOR CALCULATING THE CHROMATIC POLYNOMIAL OF A GRAPH BY VERTEX DELETION[J].Acta Mathematica Scientia,2004,24(4):577-582. 被引量:1
  • 22,许华康,杨留记.离散数学[M].西安:西北大学出版社,1994 被引量:1
  • 3Jensen T R. Toft B. Graph Coloring Problems. New York: John Wiley Sons. 1995: 48-49. 被引量:1
  • 4Bondy J A. Murty U S R. Graph Theory. New York: Springer. 2008. 被引量:1
  • 5Cayley A. On the coloring of maps. Proceedings of the London Mathematical Society. 1878. 9: 148. 被引量:1
  • 6Kempe A B. On the geographical problem of the four colors. American Journal of Mathematics. 1879. 2(3): 193-200. 被引量:1
  • 7Tait G P. On the colouring of maps. Proceedings of the Royal Geographical Society and Monthly Record of Geography. London, England. 1879. 80: 501-503. 被引量:1
  • 8Tait G P. Remarks on the previous communication. Proceedings of the Royal Geographical Society and Monthly Record of Geography. London. England. 1878-1880. 10: 729. 被引量:1
  • 9Tait G P. Note on a theorem in geometry of position. Transactions of the Royal Society of Edinburgh, 1880, 29(2): 657-660. 被引量:1
  • 10Heawood P J. Map colour theorem. The Quarterly Journal of Mathematics. 1890. 24(1): 332-338. 被引量:1

共引文献20

同被引文献6

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部