期刊文献+

基于步长自适应的独立向量分析卷积盲分离算法 被引量:5

Independent Vector Analysis Convolutive Blind Separation Algorithm Based on Step-size Adaptive
下载PDF
导出
摘要 独立向量分析(IVA)是解决频域卷积盲分离排序模糊性最好的方法之一,但存在迭代次数较多、运算时间较长、分离效果易受分离矩阵初值影响的局限性。该文提出一种基于步长自适应的IVA卷积盲分离算法,该算法使用特征矩阵联合近似对角化(JADE)算法对分离矩阵进行初始化,并对步长参数进行了自适应优化。JADE初始化能够使分离矩阵具有合理的初值,避免局部收敛的情况;步长的自适应优化能够显著提升算法的收敛速度。仿真结果表明,该算法进一步提升了分离性能,并显著缩短了运算时间。 Independent Vector Analysis (IVA) is one of the best methods to solve the sort ambiguity of convolutive blind separation in frequency domain. However, it needs more iterations and computing time, and the separation effect is susceptible to the initial value of the separation matrix. This paper proposes an IVA convolutive blind separation algorithm based on step-size adaptive, which uses Joint Approximative Diagonalization of Eigenmatrices (JADE) algorithm to initialize the separation matrix and optimizes adaptively the step step-size parameters. JADE initialization can make the separation matrix have an appropriate initial value, thus avoiding the situation of loca! convergence; step-size adaptive optimization can significantly improve the convergence speed of the algorithm. Simulation results show that this algorithm improves the separation performance and shortens the operation time significantly.
作者 付卫红 张琮 FU Weihong;ZHANG Cong(School of Telecommunication Engineering,Xidian University,Xi'an 710071,China;Collaborative Innovation Center of Information Sensing and Understanding,Xi' an 710075,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第9期2158-2164,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61201134)~~
关键词 盲源分离 卷积混合 独立向量分析 特征矩阵联合近似对角化 步长自适应 Blind Source Separation (BSS) Convolutive mixture Independent Vector Analysis (IVA) Joint Approximative Diagonalization of Eigenmatrices (JADE) Step-size adaptive
  • 相关文献

参考文献4

二级参考文献22

  • 1姚毅,贾金玲,姚娅川.盲分离技术在识别生物信号中的应用[J].仪器仪表学报,2004,25(z1):155-156. 被引量:7
  • 2Herault J,Jutten C. Space or time adaptive signal processing by neural network models[A]. in Neural Networks for Computing:Denker J S. AIP Conference Processings 151 [C]. New York : American Institute of Physics, 1986. 被引量:1
  • 3Bell A J, Sejnowski T J. An information -maximization approach for blind seperation and blind deconvolution [ J]. Neural Comput., 1995,7:1126-1159. 被引量:1
  • 4Papoulis A. Probability, random variables, and stochastic processes[M]. New York: McGraw- Hill, 1991. 被引量:1
  • 5Simon Haykin Neural Networks: a comprehensive foundation [M ]. Tsinghua University Press, 1999. 被引量:1
  • 6Cichocki A, Unbehauen R,Moszczynski L, et al. A new online adptive learing algorithm for blind separation of source signals[A], in Proc. ISANN[C]. Taiwan, 1994.406 -411. 被引量:1
  • 7Amari S, Ciehocki A, Yang H H. A new learning algorithm for blind signal separation[A], in Advances in neural information processing systems[ C]. Cambridge, 1996. 757 -763. 被引量:1
  • 8Jacob Benesty. An introduction to blind source separation of speech signals[ A]. Acoustic signal processing for telcommunication[ C ]. Boston : Kluwer Academic, 2000. 321 - 329. 被引量:1
  • 9Sansrimahachai P,Ward D B,Constantinides A G.Blind source separation of instantaneous MIMO systems based on the least-squares Constant Modulus Algorithm[J].IEE Proc-Vis Image Signal Process,2005,152(5):616-622. 被引量:1
  • 10Cardoso J-F,Donoho D L.Equivariant adaptive source separation[J].IEEE Trans Signal Process,1996,44:3017-3030. 被引量:1

共引文献21

同被引文献10

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部