摘要
Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die steel Cr12 MoV was studied by using PCBN tool with considering tool wear. Based on the numerical treatment of residual stress,the dispersion and distribution curves of different tool wear were fitted,and the influence mechanism of tool wear on the residual stress distribution of machined surface was analyzed.Based on the theory of fatigue mechanics and mathematical statistics,the mathematical model for difference of stress dispersion and fatigue life was established. The rotating and bending tests were carried out on the standard parts after cutting process for the workpiece. The influence of tool wear on fatigue life was revealed by fracture surface morphology and fatigue life study. The results provide theoretical support for control of residual stress and the fatigue property of the machined surface under the actual working conditions.
Tool wear has an important influence on the residual stress distribution on the machined surface.Also,it will influence the fatigue life of finished workpiece. In this research,the hard turning process of hardened die steel Cr12 MoV was studied by using PCBN tool with considering tool wear. Based on the numerical treatment of residual stress,the dispersion and distribution curves of different tool wear were fitted,and the influence mechanism of tool wear on the residual stress distribution of machined surface was analyzed.Based on the theory of fatigue mechanics and mathematical statistics,the mathematical model for difference of stress dispersion and fatigue life was established. The rotating and bending tests were carried out on the standard parts after cutting process for the workpiece. The influence of tool wear on fatigue life was revealed by fracture surface morphology and fatigue life study. The results provide theoretical support for control of residual stress and the fatigue property of the machined surface under the actual working conditions.
基金
Sponsored by the National Natural Science Foundation of China(Grant No.51575147)
the Science Funds for the Young Innovative Talents of HUST(Grant No.201507)