期刊文献+

基于人工智能技术的不完备信息系统智能诊断方法研究 被引量:6

Study on an Intelligent Diagnosis Method of Fault in Incomplete Information System Based on Artificial Intelligence Technology
下载PDF
导出
摘要 为了提高不完备信息系统故障诊断的正确性与效率,提出一种基于粗糙集理论、蚁群优化算法和RBF神经网络相结合的故障智能诊断方法;该方法首先利用"条件组合补齐算法"对不完备的数据进行完备化处理,再利用粗糙集对条件属性进行知识约简,得到具有最大完备度的最小规则集,接着用蚁群算法优化RBF神经网络的权值,并将最小规则集用于训练RBF神经网络模型,获得故障智能诊断模型;通过实际工程数据验证故障智能诊断模型的有效性,结果表明提出的方法能有效实现系统故障的诊断。 In order to improve fault diagnosis correctness and efficiency of incomplete information system,an intelligent diagnosis method of fault based on rough set(RS),ant colony optimization(ACO)algorithm and radial basis function(RBF)neural network is proposed.In this intelligent diagnosis method,the combination and condition supplement algorithm is used to deal with the incomplete data with the maximum completeness.The RS as a new mathematical tool is used to remove redundant information in order to obtain the minimum rule set.Then the ACO algorithm is directly used to optimize the weights of RBF neural network in order to establish an optimized RBF neural network model,then the minimum rule set is inputted the optimized RBF neural network model in order to obtain an intelligent diagnosis model.The actual data are used to verify the effectiveness of intelligent diagnosis model.The experiment results show that the proposed intelligent diagnosis method can effectively diagnose the faults of system.
作者 周頔 Zhou Di(Industrial Technological Institute of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, Chin)
出处 《计算机测量与控制》 2018年第9期5-8,共4页 Computer Measurement &Control
基金 自然科学基金(2014JY0111) 四川省教育厅科技计划项目(18ZA0415)
关键词 智能诊断 不完备信息系统 粗糙集理论 蚁群算法 神经网络 intelligent diagnosis incomplete information system rough set theory ant colony optimization RBF neural network
  • 相关文献

参考文献11

二级参考文献54

  • 1武妍,王守觉.一种通过反馈提高神经网络学习性能的新算法[J].计算机研究与发展,2004,41(9):1488-1492. 被引量:15
  • 2管延勇,薛佩军,王洪凯.不完备信息系统的可信决策规则提取与E-相对约简[J].系统工程理论与实践,2005,25(12):76-82. 被引量:22
  • 3盛步云,林志军,丁毓峰,罗丹,谢庆生.基于粗糙集的协同设计冲突消解事例推理技术[J].计算机集成制造系统,2006,12(12):1952-1956. 被引量:16
  • 4刘春亚 何伟.一种基于粗集的缺损数据的处理方法[J].计算机科学,2002,29(9):44-46. 被引量:4
  • 5郝忠孝.空值环境下数据库系统[M].北京:机械工业出版社,1996.. 被引量:1
  • 6PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982,11 (5) : 341-356. 被引量:1
  • 7SLOWINSKI R, STEFANOWSKI J. Handing various types of uncertainty in the rough set approach[C]//Proeeedings of International Workshop on Rough Sets and Knowledge Diseov cry:Rough Sets, Fuzzy Sets and Knowledge Discovery. London, UK:Springer-Verlag, 1993:366-376. 被引量:1
  • 8THIESSON B. Accelerated quantification of Bayesian net works with incomplete data[C]//Proceedings of the 1st Inter national Conference on Knowledge Discovery and Data Min ing. Menlo Park, Cal., USA;AAAI Press, 1995:306-311. 被引量:1
  • 9SLOWINSKI R, VANDERPOOTEN D. A generalized definition of rough approximations based on similarity [J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2):331-336. 被引量:1
  • 10SARWAR B M. Sparsity, scalability, and distribution in recommender systems[D]. Minneapolis, Minn. , USA: University of Minnesota, 2001. 被引量:1

共引文献520

同被引文献24

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部